

Configure SSH
For GitHub

Rick Miller, MS Computer Science
IT-566: Computer Scripting Techniques
Marymount University
Baslton Center, Arlington, VA

Configure SSH For GitHub

 i

Contents

1 Introduction ... 1

2 Assumptions ... 1

3 Process Overview ... 1

4 All Operating Systems ... 1

4.1 Verify Existence of or Create ~/.ssh Directory .. 1

4.2 Create ~/tmp Directory .. 2

4.3 Generate SSH Keys .. 3

4.4 Add Public Key To GitHub ... 5

4.5 Add Private Key to ssh-agent .. 8

5 Testing Your SSH Key ... 9

6 Test SSH Key On Repository .. 11

7 Avoid Having To Type Passphrase All The Time .. 12

7.1 MacOS ... 12

7.2 Windows .. 12

Configure SSH For GitHub

 1

1 Introduction
Secure Shell (SSH) enables you to connect to and interact with your GitHub

repository from the command line without the need to enter your GitHub username
and password.

For inexperienced developers, SSH key generation and configuration can seem
intimidating due to the need to enter terminal commands and explore the contents
of hidden directories.

If you want to attempt the setup process using the GitHub instructions here’s
the link: https://docs.github.com/en/authentication/connecting-to-github-with-
ssh/about-ssh

Fear not! While the instructions on GitHub are clear and well-written, this guide
will walk you through SSH key generation and help you avoid common problems. 🙂

2 Assumptions
• You have a GitHub account
• Using Git Bash on Windows

3 Process Overview
• Verify the existence of or create ~/.ssh directory
• Create a ~/tmp directory to practice key generation
• Generate public and private SSH keys with a passphrase
• Copy the public and private keys to the ~/.ssh directory
• Add the public key to your GitHub account
• Add the private key to your local machine’s SSH Agent
• Test your SSH key

4 All Operating Systems
These steps are the same on all operating systems

4.1 Verify Existence of or Create ~/.ssh Directory

Check for the existence of the ~/.ssh directory. In your home directory (~) type:

ls -al

You should see the .ssh directory as shown in figure 1.

Configure SSH For GitHub

 2

Figure 1 — Home Directory Showing .ssh Directory

If you don’t see the .ssh directory, create it using the following command:

mkdir .ssh

Don’t forget the dot ‘.’ in front of ssh! Very important as it’s a hidden directory.
Verify once again the .ssh directory exists and when you’re satisfied create a ~/tmp
directory.

4.2 Create ~/tmp Directory
The purpose of the ~/tmp directory is to provide a space for you to practice SSH

key generation without overwriting existing SSH keys you may have on your
system. Of all steps in the SSH configuration process, it’s key generation you may
have to do a few times to get exactly right. I know it took me a few times when I
first did it.

OK, create the ~/tmp directory using the following command. This is NOT a
hidden directory so leave out the dot.

mkdir tmp

Navigate to the ~/tmp directory for the next step.

Configure SSH For GitHub

 3

4.3 Generate SSH Keys
NOTE: Be careful. When you generate the key, the output location will be
the ~/.ssh directory. That’s OK if there are no keys in the directory, but you
should specify the location where the keys are saved so they go into the
~/tmp directory for practice.

Navigate to the ~/tmp directory and enter the following command, changing the
email address to the one you used for your GitHub account.

ssh-keygen -t ed25519 -C "your_github_email@example.com"

Hit return. You will see the message: “Generating public/private id_ed25519 key
pair.” as shown in figure 2.

Figure 2 — Generating SSH Public/Private Key Pair

DON’T DO IT! But if you hit return now, the keys will be written automatically to
the ~/.ssh directory.

• Since you are already in the ~/tmp directory simply enter the filename:
id_ed25519. Hit return.

• Enter a passphrase. This will be the password you want to use for the SSH
key. Hit return.

• Verify passphrase. Hit return.
If everything goes well, you’ll see an output similar to figure 3 but with your email.

Let’s decompose that command.
ssh-keygen Command that generates SSH keys
-t ed25519 -t Specifies the type of key gen

algorithm. In this case it’s specifying
the ed25519 algorithm.

-C “rick@pulpfreepress.com” -C Add a comment. GitHub requires
you to add your GitHub account email.

Configure SSH For GitHub

 4

Figure 3 — Key Gen Success!

OK, list the ~/tmp directory. You should see something like this:

Figure 4 — Public and Private Keys

You should see both a public and a private key. The public key ends in .pub. Now,
list the contents of the public key by typing the following command:

cat id_ed25519.pub

You should see an output similar to figure 5.

Configure SSH For GitHub

 5

Figure 5 — Listing Contents of Public Key

Your character string and email will be different.

OK, some things to consider. When you generate the keys you can name them
anything you want. I sometimes use the term devkey or githubkey but using the
default name is fine.

If you’re happy with the keys you can copy them to the ~/.ssh directory.

4.4 Add Public Key To GitHub
Log into your GitHub account and navigate to the SSH keys page by clicking the

dropdown on your account icon in the upper right corner, click Settings, then in the
left column click SSH and GPG keys. This will open the SSH and GPG keys page as
shown in figure 6.

Configure SSH For GitHub

 6

Figure 6 — GitHub SSH and GPG keys Page

Referring to figure 6 — I have one SSH key listed for my account. To add a new
key, click the green New SSH key button. This opens the New SSH key page as
shown in figure 7.

Figure 7 — New SSH Key Page

Configure SSH For GitHub

 7

Enter a name for the key in the Title textbox. Leave the Key type dropdown set to
Authentication Key, and list and copy the contents of your SSH public key into the
Key textbox. You can list your public SSH key, which now should be located in the
~/.ssh directory, with the following command:

cat keyname.pub

Where keyname is the name you used to generate the key. Copy the key text by
selecting the text with your mouse, right-click, and select Copy from the dropdown
as shown in figure 8.

Figure 8 — Select and Copy Public Key Text

Next, copy the public key text into the GitHub SSH Key textbox as shown in figure
9.

Figure 9 — Paste Public Key Text Into Key Textbox

Finally, name your new SSH key and click the green Add SSH key button. If you
have two-factor authentication enabled you may get a pop-up asking you to
authenticate. Figure 10 shows the new SSH key added to the list.

Configure SSH For GitHub

 8

Figure 10 — New SSH Key Added to GitHub

You will receive an email notifying you of the addition of a new SSH key to your
GitHub account.

4.5 Add Private Key to ssh-agent
To use your SSH key to connect to GitHub, you need to add it to the ssh-agent.

Navigate to the ~/.ssh directory and start the ssh-agent with the following
command:

eval "$(ssh-agent -s)"

You should see a process Agent pid as a result as shown in figure 11.

Figure 11 — Starting ssh-agent in Git Bash

Note the pid number you see may be different. To verify the ssh-agent is running
type the following command:

Configure SSH For GitHub

 9

ps

You’ll see a list of running processes as shown in figure 12.

Figure 12 — List Running Processes with ps Command

With the ssh-agent running, add your private key to the ssh-agent using the
following command:

ssh-add keyname

Where keyname is the name of your private SSH key. You will be prompted to enter
the private key passphrase as is shown in figure 13.

Figure 13 — SSH Private Key Added to ssh-agent

5 Testing Your SSH Key
OK, now you have generated public and private SSH keys. You added the public

key to your GitHub account and added the private key to your ssh-agent on your
machine. When you navigate to one of your GitHub repositories and click the green
Code button you should see an SSH option as shown in figure 14.

Configure SSH For GitHub

 10

Figure 14 — SSH Option

To test your SSH key, launch a terminal window on MacOS or the Git Bash
terminal on Windows and type the following command:

ssh -T git@github.com

If this is your first time testing the key on your computer, you may see a message
similar to figure 15.

Figure 15 — Fist Time SSH Key Test

Type yes and hit return. You will also be prompted for your passphrase. Enter it
and hit return. If you get the following error in Get Bash…

PTY allocation request failed on channel 0

…close the Git Bash window, relaunch it, and try the test again. Second time’s a
charm. When the test succeeds, you will see something similar to the output shown
in figure 16.

Configure SSH For GitHub

 11

Figure 16 — Successful SSH Key Test

6 Test SSH Key On Repository
Clone one of your repositories using the SSH option. To do this, click the green

Code button located in your GitHub repository window, select SSH, and click the
copy icon. Navigate to a folder on your computer and type the following command…

git clone

…and paste in the SSH repo string you copied above. The full command will look
something like this…

git clone git@github.com:pulpfreepress/it-566-computer-scripting.git

…but with the URL to your repository. You should see something similar to figure
17.

Figure 17 — Cloned Repo Using SSH

Next, edit and modify one of the files in your repository. Commit and push the
changes. You will be prompted for your passphrase. Enter it and hit return. If all
goes well (a phrase used a lot in this line of work) you should see something similar
to figure 18.

Configure SSH For GitHub

 12

Figure 18 — Successful push

7 Avoid Having To Type Passphrase All The Time
Depending on the operating system you have, you can add or modify

configuration setting to avoid having to enter the SSH key passphrase for each
push.

7.1 MacOS
Open a terminal and add a config file to the ~/.ssh directory. Edit the

~/.ssh/config file and add the following lines:

Host *
 AddKeysToAgent yes
 UseKeychain yes
 IdentityFile ~/.ssh/id_ed25519

Replace id_ed25519 with the actual name of your private SSH key if necessary.
Save the config file and relaunch the terminal.

7.2 Windows
Open Git Bash and edit the .bash_profile file and add the following lines:

Configure SSH For GitHub

 13

eval "$(ssh-agent -s)"
ssh-add ~/.ssh/id_rsa

Save the file and relaunch the Git Bash window. You’ll be prompted to enter the
private key passphrase once when launching the window but not each time you
need to push to a repository.

OK, that’s about it.

