~ e)).nam,

96
'fOr 2 s
97 1 in range(1, date
o8 if start gateTy —Span.days):
99 \ \ | g oSV = o
s | * \ |
Q0 \ \ T -
101 | | :
\\ \‘ l date),
1@2 : \ \ ek colof E/ | SRGTRE
103 "\ \ \ if self._insert =
104 \ |\ . self._marke
205 | | :
06 : : if self._debug == PRy
5 7 \ ,_ | print(json.dumps(ltem))
10 |
‘ v .Va‘_ue < 4: ,value % 1)
168 \ if day__color o = Marketcolor(day’co"or
2 109 | day_co
110 else: 1or = a etcolor 5‘: el art 00"
111 dayg Ce _ geltal(ddy otor, gt W, 2
ta rt’ a ' i ;art_date -
2 112 S . If' tartf te, rs(rart. S
113 . rket’cc\.or tes’an ,daey— 1 (1tem5
114 Cat or 1:‘; rate,h'ls eflh toric ek
e ~ _elf:9€ 1f-5
5 f ge\'\ _ s€ e
mar“et’ x == L em (marke -
117 £ A sef seft’ ,tems ‘
1 in i o
A Q se\-f et date- . P
= w re? i da_taa (105 e.zip

e __qU e 24

"Exports [?contains(N
imtext)

dep.

-region ${_de
[?contains(N

a: "${_dynamo
"${_sns_to

ment_region}

dler modules
its and all s

o

1f
ctor.zip from sam

Marymount University

Problem Solving

How To Learn Python
or
Any Programming Language

Fundamentals

Processing Command-Line
Arguments

IT-566-A: Computer Scripting Techniques

What Do Computers Do Best? ‘

IT-566-A: Computer Scripting Techniques

Repeated calculations...

Marymount University IT-566-A: Computer Scripting Techniques

What Differentiates Humans ‘
From Computers?

IT-566-A: Computer Scripting Techniques

Abstract thought...

Marymount University IT-566-A: Computer Scripting Techniques

What's the hardest part about ‘

, orogramming a computer?

IT-566-A: Computer Scripting Techniques

* fAnalyzing a problem
 Formulating a solution

* Bounding solution with constraints

* [mplementing solutionto runona machine

Marymount University IT-566-A: Computer Scripting Techniques

Problem Solving

A General Approach

Material from C# For Artists, Chapter 1

Difficulties You’ll Encounter...

In Addition to the Syntax and Semantics of Python...

* A development environment, which could be as simple as the
combination of a text editor and command-line compiler or
as complex as a commercial product that integrates editing,
compiling, and project management capabilities into one
suite of tools

* A computing platform of your choice (i.e., a compute running
Microsoft Windows 10, MacQS, or Linux.)

* Problem solving skills

* Project approach techniques

* Project complexity management techniques

* The ability to put yourself in the mood to program

* The ability to stimulate your creativity

* Object-oriented analysis and design

* Object-oriented programming principles

* Functional Decomposition

Marymount University IT-566-A: Computer Scripting Techniques

R |

&
2
2
=
-
-
A
2
4
=
=
=
£
Z
K

- &
R
[VL e -
AL
3 S
2 ‘?
wk
’

AN Approach To The
ARrT Of PROGRAMMING

Learning Objecrives

o Describe the difficulries you will excounier iv your guesr 1o become 4 C# proGrawver
o List and describe the fearures of av inteGrared development exvirosment (IDE)

o List and describe the siages of the “flow”

» List and describe the three roles you will play as A proGrRamming student

* Snare 1he purpose of The projecrapproack siraregy

e List and describe the steps of the projecrapproact strateGy

e Lisr and describe the sreps of the developwen cycle

* List and describe wo 1ypes of project complexiry

o Snre the meaning of the phrases “maxinize cohesion” avd “mivinize coupling”

* Describe the differences benween fuxcrional decomposition avd objecroriented desigy
* Suare rhe meaning of the rerm “isomorphic mapping”

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved

10

Personality Traits of Great Programmers

Creative

The most prevalent trait. Solving problems such that they run on a computer requires lots of creativity.

Tenacious

Do you like to bite into a problem like a pit bull and not let go until you succeed?

Resilient

When a though problem gives you a thorough trouncing, do you take a break and come back strong?

Methodical

You must approach a solution in a methodical way, whether a formal methodology exists or not.

Meticulous

Close attention to detail is paramount. You will suffer at first until you learn the lesson.

Honest

Do the right thing in the code when no one is looking.

Proactive

Recognize and capitalize on opportunity. Ask questions. Seek answers.

Humble

Know when to seek guidance or help. Push ego aside for the greater good.

Marymount University IT-566-A: Computer Scripting Techniques

Be A Generalist and a Just-In-Time Specialist

“Great programmers are well-versed in all aspects of computing. Rarely have |
ever met any who referred to themselves as only a this type of programmer or
a that type of programmer. I'd rather hire generalists with solid educational
backgrounds and the proven ability to teach themselves new tricks, than to
bank on a specialist who refuses to grow professionally. In other words, great
programmers have a broad range of skills they can apply to the problem. Great
programmers can gather requirements, design a solution, write the code,
conduct testing, write supporting documentation, deploy the application, if
necessary, and carry on intelligent conversations with the customer to boot.”

Marymount University IT-566-A: Computer Scripting Techniques 12

Three Roles You Play

Ana|yst You need to formulate a deep understanding of the problem you are trying to solve. Don’t understand
a programming assignment? Ask questions. Study the problem. Become a subject matter expert (SME).

Design a solution. Must understand software design techniques. A simple project may rest easily upon
a simple design, but if multiple objects interact with each other or clients must communicate with
servers, or millions of requests must be processed simultaneously, or huge amounts of data must be
ingested and processed within seconds, such systems will demand completely different architectures.

programmer You must implement your design. Soon enough you will discover if you’ve designed yourself into a
corner. You may need to refactor your code and your design.

Marymount University IT-566-A: Computer Scripting Techniques 13

Project Approach Strategy

* Helps You To...
« Get Started
* Maintain Forward Momentum
* Overcome Obstacles
* Get Unstuck
* Maintain Positive Attitude
» Avoid Depression
« Grow Professionally
* Feel Good About Your Chosen Career Path
* Enjoy Programming
« Conquer The World
 Become Ruler of the Universe

Marymount University IT-566-A: Computer Scripting Techniques

14

Project Approach Strategy — Areas of Concern

Application
Requirements

An assertion about expected behavior. Contained in project specification or programming
assignment. (Real world requirements derived from many possible sources.) Ensure complete
understanding before proceeding. Seek clarification. Ask questions.

Problem
Domain

Body of knowledge required to implement a software solution apart and distinct from the
knowledge of programming itself. ”Write an elevator simulation program...” You may know nothing
about elevators. You need to become enough of an expert to understand the issues involved. Also
known as Subject Matter Experts (SMEs)

Programming
Language
Features

Major source of frustration, especially in the beginning. To save yourself from panic, make a list of
the language features you need to understand, marking it off the list as you go. Provides focus and a
sense of progress. As you study each feature, take notes on its usage. Refer to your notes when you
begin to formulate your design.

High-Level
Design

A.K.A. — Application Architecture. Might be a single file. Might be hundreds. Various approaches:
Procedural, Functional, Object-Oriented.

Implementation
Strategy

Marymount University

How you intend to code the program? Where will you start? How much code should your write at a
time? Will you write everything from scratch or stand on the shoulders of giants? When you start
writing code you need to stick to a development cycle. Be methodical.

IT-566-A: Computer Scripting Techniques

Functional Decomposition & Procedural Programming

Dependency

Direction
Module A
|
‘ I}
Module B Module D

l —

Module F

Marymount University IT-566-A: Computer Scripting Techniques 16

Functional Decomposition & Procedural Programming

Marymount University IT-566-A: Computer Scripting Techniques

17

Object-Oriented

<<Abstract>> <<Abstract>> <<Abstract>>

Class B Class C

Subclass Subclass

Subclass Subclass

Marymount University IT-566-A: Computer Scripting Techniques 18

Dependency
Direction

Object-Oriented Analysis, Design, and Programming

 Isomorphic Mapping

* Open Closed Principle (OCP)

» Dependency Inversion Principle
(DIP)

Marymount University IT-566-A: Computer Scripting Techniques

19

Development Cycle

Design to the point where you can start coding. Do not attempt to design everything up front. The idea
here is to keep your design flexible and open to change.

Implement what you have designed.

Thoroughly test each section or module of source code. The idea here is to try to break it before it has
a chance to break your application. Write unit tests. Aim for >85% code coverage. When you write a

piece of code ask yourself, “How can | test this?” If testing seems difficult or impossible, perhaps you
need to refactor.

Integration &
Regression
Testing

As you iterate over each development sprint perform integration and regression testing. This simply
means as you create individual pieces of functionality in your application, start testing them together

where possible.

Refactor

When you encounter difficulties with your design and implementation, or you think of a better way of
doing something, make necessary improvements.

Marymount University IT-566-A: Computer Scripting Techniques

Code Stages

R R R

Just Get It Ugly Baby Works. Proof of concept. Full of code smells. Not pretty. Not optimal. Influenced
Gnarly Toenail by bad habits. Untested. Exploitable. Bad formatting. No comments. Magic
values. Hard to understand. Impossible to change without breaking something.

Working

Transitional Starting to look like Python. Best practices. Self commenting. Consistent naming
convention.

Beautiful Code Well architected. Well structured. More efficient. Minimally coupled, Maximally
cohesive. Easy to comprehend. Easy to modify.

Optimized | Quality Without A | Every statement analyzed for speed and resource usage. Optimized for
Name (QWAN) maximum efficiency.

Marymount University IT-566-A: Computer Scripting Techniques 21

How [To Learn Python

Any Programming Language

Programming In Python Isn’t Hard

Programming In Python Is Hard

Marymount University IT-566-A: Computer Scripting Techniques 23

Hard isn’t really the right word, but...

You'll spend way more time and
effort learning to program wvs.
learning Python.

Marymount University IT-566-A: Computer Scripting Techniques

24

If you’re new to programming, you’re learning two
new concepts: 1. How to program, and 2. Python.

That’s hard.

Once you learn how to program, learning
another programming language is easy.

But there are caveats...

25

Marymount University IT-566-A: Computer Scripting Techniques

Depends on 1. Your first programming language, and 2. The
paradigm it supported, and you adopted, to design and
implement your programs.

By paradigm | mean: What'’s The Difference?
* Imperitive |mperitive
 Machine Code Step-by-Step
* Assembly Control Flow (Explicit)
* Procedural Declarative
 Object-Oriented e Data Flow
* Declarative » Desired Results

e Functional

Marymount University IT-566-A: Computer Scripting Techniques 26

Python Supports Multiple Paradigms

Imperative
Procedural

Imperative
Object-Oriented

to Certain Degrees

Declarative
Functional

import boto3

ort json
o0s
re
def lambda_handler(event, context):
t("srrnax Begin Execution sessessss’)
t("EVENT: “ + json.dumps(event))

json_region = os.environ('AWS_REGION']

print('JSON Region: '

message = {}

ip = '0.0.0.0

userAgent = event['requestContext’]['identity’'])['userAgent’]
t('USER-AGENT: ' + userAgent)

+ json_region)

€53-Health-Check skip sqs and sns

not in userAgent:

ess from X-Forwarded

results = re.findall("~Jl1,3). 01, 3). 1,3} . 1,3}, event['headers']['X~Forwarded-For'])
t("USER'S IP ADDRESS: " + results(e])
ip = results(e]
except Exception as e:
t("ERROR EXTRACTI

NG IP ADDRESS: * (e))

Extract queryStringParameters

queryStringParameters
if event['queryStringP
if 'r' in event('que g

if event['quer ingParame
message['range’'] = event

queryStringParaseters'1('r']

message['r

'u’ in event['que reters‘):
if event['queryStringParameters']('u’] is not None:
message('unit'] = event['queryStringParameters’]['u']
else:
message['unit’) d

from abc import ABC, abstractmethod
from powerplants.powerplant import PowerPlant
from weapons.weapon import Weapon

class Vessel(ABC):
Defines the interface for a Weapon object.
def nit__(self, identifier: str, weapon: Weapon, powerplant: PowerPlant):
self._identifier = identifier
elf._weapon = weapon
elf._powerplant = powerplant

print("%s %s: base class object created" % (self.__class__.__bases__[0).__name__,
n(self):
nt("%s: aim() method called..." % (self.__class__.__bases__[8].__name__))

ire(self):
pass

flx’w-:f, [“\"1"' (self):

n_plant(self):

r_(self):

return "%s" % (self.__class__.__name__ + " " + ‘._identifier)]

self._identifier))

Iterators

def iter_demo(self):
message = 'A string of letters is also a list of chars...'
for s in message:
print(f'{s} ', end="")

Lambda, map()

def lambda_demo(self):
print(f'{list(map(lambda x: x + x , [1,2,3,4,5]))} ', end="")

Dynamic Typing
(No Static Typing)

Marymount University

No Encapsulation

IT-566-A: Computer Scripting Techniques

Not Purely Functional, but
Functions are First Class Objects

27

To Learn Python — Learn [How To...]

* Find Answers
« Python Documents
« Google
* YouTube

* Organize Your Code
« Packages
 Modules
» Classes
* Functions

 Create Code
 |IDE

« Format Code
- PEP 8

* Run Programs
* Debug Code

Marymount University

 Test Code e Data Structures

- Name Things > LBl
. . e Lists
» Store data In: . Dictionaries

» Variables . Sets
 Constants

« Scoping Rules

 Built-In Functions
« Data Input/Output (I/O)

* Operators ; :
* File Processing

* Loop (lterate
p() « Handle Exceptions

o for

» while « Use 3" Party Libraries
« Branch (Conditions) * Break OIld Habits

* if/else » Python Idioms

 match/case

IT-566-A: Computer Scripting Techniques 28

Pro Tips

- Don’t Start At the Computer But Most Importantly...
« Ever write an essay? When Searching for Help — Ask Google

« Before you sit down to write code... Straight Up What You're Trying To Do In
» You should have a good idea how to proceed Clearest Most Direct Way Possible

* Think Algorithm First

* Write comments in plain English
* Pseudo Code
« Becomes intuitive over time

 Translate comments into code
* Run Early and Often

e Fix the first error first
* Then try again

Marymount University IT-566-A: Computer Scripting Techniques 29

Fundamentals

PEP-8 — Style Guide for Python Code

Python Enhancement Proposals

Contents

» Introduction

» AFoolish Consistency is the
Hobgoblin of Little Minds

» Code Lay-out

= |ndentation

= Tabs or Spaces?

= Maximum Line Length

» Should a Line Break Before or After
a Binary Operator?

= Blank Lines

= Source File Encoding

= |mports

= Module Level Dunder Names

String Quotes

Whitespace in Expressions and

Statements

= Pet Peeves

= Other Recommendations

When to Use Trailing Commas

Comments

= Block Comments

= Inline Comments

= Documentation Strings

Naming Conventions

= Overriding Principle

= Descriptive: Naming Styles

= Prescriptive: Naming Conventions
= Names to Avoid
= ASCIl Compatibility
= Package and Module Names
= Class Names
= Tvpe Variable Names

Marymount University

J PEP 8 - Style Guide for Python Code | peps.python.org

Python » PEP Index » PEP 8

PEP 8 - Style Guide for Python Code

Author: Guido van Rossum <guido at python.org>, Barry Warsaw <barry at python.org>, Nick Coghlan
<ncoghlan at gmail.com>
Status: Active
Type: Process
Created: 05-Jul-2001
Post-History: 05-Jul-2001, 01-Aug-2013

» Table of Contents

Introduction

This document gives coding conventions for the Python code comprising the standard library in the main Python
distribution. Please see the companion informational PEP describing style guidelines for the C code in the C
implementation of Python.

This document and PEP 257 (Docstring Conventions) were adapted from Guido’s original Python Style Guide essay,
with some additions from Barry’s style guide [2].

This style guide evolves over time as additional conventions are identified and past conventions are rendered obsolete
by changes in the language itself.

Many projects have their own coding style guidelines. In the event of any conflicts, such project-specific guides take
precedence for that project.

A Foolish Consistency is the Hobgoblin of Little Minds

One of Guido’s key insights is that code is read much more often than it is written. The guidelines provided here are
intended to improve the readability of code and make it consistent across the wide spectrum of Python code. As PEP
20 says, “Readability counts”.

Asstyle guide is about consistency. Consistency with this style guide is important. Consistency within a project is more
important. Consistency within one module or function is the most important.

However. know when to be inconsistent - sometimes stvle guide recommendations iust aren’t applicable. When in

IT-566-A: Computer Scripting Techniques

RO

https://peps.python.org/pep-0008/

Focus On...
* Code Layout
* Consistent String Quoting
* Naming Conventions
* Packages
* Modules
* Functions
* Classes
* Methods
e Variables
* Constants
* Plugins Can Help with
Formatting

31

https://peps.python.org/pep-0008/

Doc Comments

) 0 ® [¢ o 0 = Not Secure — pydocstyle.org & th
[} 48 pydocstyle’s d: ion — pydocstyle 1.0.0 d
pydocstyle i -
244 Docs » pydocstyle's documentation O Edit on GitHub
Usage

You are not reading the most recent version of this documentation. 6.1.1 is the latest version

Error Codes available.

Release Notes

Older Versions

License

-
-
pra "

RECEWE Ouk BRAND . .
st implementation.

Why SCA tools aren't enough: Join us
Sept. 22, 2022 and receive a free t-
shirt. U.S. only. RSVP

Quick Start

pydocstyle’s documentation

pydocstyle is a static analysis tool for checking compliance with Python docstring conventions.

pydocstyle supports most of PEP 257 out of the box, but it should not be considered a reference

pydocstyle supports Python 2.7, 3.3, 3.4, 3.5 and pypy.

pip install pydocstyle

test.py

private nested class ‘meta

Docstring missing

public function “get_user

"""triple double quotes""" (found '''-quotes)

test:75 in public function “init_database
D201: No blank lines allowed before function docstring (found 1)

Ad by EthicalAds Host these ads
1. Install

$ pydocstyle
test.py:18 in
Dle1l
test.py:27 in
D300: Use

3. Fix your code :)

& Read the Docs -

Marymount University

pydocstyle

http://www.pydocstyle.org

Validates doc comments
Installation:
pipenv install ~dev pydocstyle
* Run
pipenv run pydocstyle src/example.py

IT-566-A: Computer Scripting Techniques 32

http://www.pydocstyle.org/

Classes & Methods

 Classes
 Logical Organization and Way of Thinking
* Object-Oriented Analysis, Design, and Programming (OOAD & P)
» Physical Namespace for Methods and Attributes
» Group Together Related Code and Data

 Methods

* Functions Associated with a Class
» A function defined outside of a class is called a function
* A function defined inside of a class is called a method

* A Program is an Interaction Between Objects

* Rule of Thumb

* One Class Per Module — For Sanity

* Module and Class Have Same Name
* Module name all lowercase | Class hame begins with upper case letter

Marymount University IT-566-A: Computer Scripting Techniques

ES

OOAD&P Design Language — UML umML — unified Modeling Language

<<Abstract>>

Class Base Class Abstract Base Class

Derived Class Derived Class

UML is more than just pictures — | mostly use it to communicate designs

Marymount University IT-566-A: Computer Scripting Techniques 34

Sequence Types: Lists, Tuples, Ranges

https://docs.python.orqg/3/library/stdtypes.html#sequence-types-list-tuple-range

List []

« An iterable, mutable sequence of objects

* List is an object with methods
[1,2,3,4].append(5) =>[1,2,3,4,5]

« Some operations on lists performed via global built-in functions
len([1,2,3,4,5]) => 5
min([1,2,3,4,5]) => 1

« Accessed via index
[1,2,3,4,5][0] => 1

 Strings can be treated like lists but are immutable

« Don’t support operations that would change the state
'Hello, World![0] => H

Marymount University IT-566-A: Computer Scripting Techniques

35

https://docs.python.org/3/library/stdtypes.html

Dictionaries

https://docs.python.org/3/tutorial/datastructures.html#dictionaries

* Dictionary { }
* |[terable set of key:.value pairs
« Keys must be an immutable type
* string
* integer
 tuple (As long as it contains immutable types)
» Operations

ages = { } # Create empty dictionary
ages = {'Bill’:23, ‘Steve’:42, ...} # Create with data
ages[‘Bill’] # Access via key => 23
list(ages) # Returns list of keys
ages[‘Coralie’] = 32 # Add new key:value

Marymount University IT-566-A: Computer Scripting Techniques

36

https://docs.python.org/3/tutorial/datastructures.html

File Input/Output (I/O)

https://docs.python.org/3/tutorial/inputoutput.html#reading-and-writing-files

« Easy-Peasy in Python
f=open(‘names.txt’, 'w’, encoding=‘utf-8")
f.write(‘Guido van Rossum’)
f.close()

« But Use with Keyword (Automatic Resource Cleanup)
with open(‘names.txt’, 'r’, encoding=‘utf-8’) as f:
names_data = f.read()

Marymount University IT-566-A: Computer Scripting Techniques

37

https://docs.python.org/3/tutorial/inputoutput.html

Exceptions

https://docs.python.org/3/tutorial/errors.html

* Lots Of Things Can Go Wrong In Code
* File I/0 Errors
* Network Errors
 Just to list a few...
* Exception
 Error Detected During Execution

* try/except Statement
* Place Code in Try Block
« Handle Exceptions in Except Block

https://docs.python.org/3/library/exceptions.html#concrete-exceptions

Marymount University IT-566-A: Computer Scripting Techniques 38

https://docs.python.org/3/tutorial/errors.html
https://docs.python.org/3/library/exceptions.html

Processing
Command-Line Arguments

with
argparse

Backup Slides

Marymount University IT-566-A: Computer Scripting Techniques 41

