
Week 3

Marymount University IT-566-A: Computer Scripting Techniques 2

Week 3 Talking
Points

Problem Solving

How To Learn Python
or

Any Programming Language

Fundamentals

Processing Command-Line
Arguments

Marymount University IT-566-A: Computer Scripting Techniques 3

?What Do Computers Do Best?
?

? ?

Marymount University IT-566-A: Computer Scripting Techniques 4

Repeated calculations…

Answer

Marymount University IT-566-A: Computer Scripting Techniques 5

?What Differentiates Humans
From Computers?

?
? ?

Marymount University IT-566-A: Computer Scripting Techniques 6

Abstract thought…

Answer

Marymount University IT-566-A: Computer Scripting Techniques 7

?What’s the hardest part about
programming a computer?

?
? ?

Marymount University IT-566-A: Computer Scripting Techniques 8

• Analyzing a problem
• Formulating a solution
• Bounding solution with constraints
• Implementing solution to run on a machine

Answer

Problem Solving
A General Approach

Marymount University IT-566-A: Computer Scripting Techniques 10

Material from C# For Artists, Chapter 1

• A development environment, which could be as simple as the
combination of a text editor and command-line compiler or
as complex as a commercial product that integrates editing,
compiling, and project management capabilities into one
suite of tools

• A computing platform of your choice (i.e., a compute running
Microsoft Windows 10, MacOS, or Linux.)

• Problem solving skills
• Project approach techniques
• Project complexity management techniques
• The ability to put yourself in the mood to program
• The ability to stimulate your creativity
• Object-oriented analysis and design
• Object-oriented programming principles
• Functional Decomposition

In Addition to the Syntax and Semantics of Python…

Difficulties You’ll Encounter…

Personality Traits of Great Programmers

Marymount University IT-566-A: Computer Scripting Techniques 11

Creative The most prevalent trait. Solving problems such that they run on a computer requires lots of creativity.

Tenacious Do you like to bite into a problem like a pit bull and not let go until you succeed?

Resilient When a though problem gives you a thorough trouncing, do you take a break and come back strong?

Methodical You must approach a solution in a methodical way, whether a formal methodology exists or not.

Meticulous Close attention to detail is paramount. You will suffer at first until you learn the lesson.

Honest Do the right thing in the code when no one is looking.

Proactive Recognize and capitalize on opportunity. Ask questions. Seek answers.

Humble Know when to seek guidance or help. Push ego aside for the greater good.

Be A Generalist and a Just-In-Time Specialist

Marymount University IT-566-A: Computer Scripting Techniques 12

“Great programmers are well-versed in all aspects of computing. Rarely have I
ever met any who referred to themselves as only a this type of programmer or

a that type of programmer. I’d rather hire generalists with solid educational
backgrounds and the proven ability to teach themselves new tricks, than to

bank on a specialist who refuses to grow professionally. In other words, great
programmers have a broad range of skills they can apply to the problem. Great

programmers can gather requirements, design a solution, write the code,
conduct testing, write supporting documentation, deploy the application, if

necessary, and carry on intelligent conversations with the customer to boot.”

Three Roles You Play

Marymount University IT-566-A: Computer Scripting Techniques 13

Analyst You need to formulate a deep understanding of the problem you are trying to solve. Don’t understand
a programming assignment? Ask questions. Study the problem. Become a subject matter expert (SME).

Architect Design a solution. Must understand software design techniques. A simple project may rest easily upon
a simple design, but if multiple objects interact with each other or clients must communicate with
servers, or millions of requests must be processed simultaneously, or huge amounts of data must be
ingested and processed within seconds, such systems will demand completely different architectures.

Programmer You must implement your design. Soon enough you will discover if you’ve designed yourself into a
corner. You may need to refactor your code and your design.

Project Approach Strategy

• Helps You To…
• Get Started
• Maintain Forward Momentum
• Overcome Obstacles
• Get Unstuck
• Maintain Positive Attitude
• Avoid Depression
• Grow Professionally
• Feel Good About Your Chosen Career Path
• Enjoy Programming
• Conquer The World
• Become Ruler of the Universe

Marymount University IT-566-A: Computer Scripting Techniques 14

Project Approach Strategy — Areas of Concern

Marymount University IT-566-A: Computer Scripting Techniques 15

Application
Requirements

An assertion about expected behavior. Contained in project specification or programming
assignment. (Real world requirements derived from many possible sources.) Ensure complete
understanding before proceeding. Seek clarification. Ask questions.

Problem
Domain

Body of knowledge required to implement a software solution apart and distinct from the
knowledge of programming itself. ”Write an elevator simulation program…” You may know nothing
about elevators. You need to become enough of an expert to understand the issues involved. Also
known as Subject Matter Experts (SMEs)

Programming
Language
Features

Major source of frustration, especially in the beginning. To save yourself from panic, make a list of
the language features you need to understand, marking it off the list as you go. Provides focus and a
sense of progress. As you study each feature, take notes on its usage. Refer to your notes when you
begin to formulate your design.

High-Level
Design

A.K.A. — Application Architecture. Might be a single file. Might be hundreds. Various approaches:
Procedural, Functional, Object-Oriented.

Implementation
Strategy

How you intend to code the program? Where will you start? How much code should your write at a
time? Will you write everything from scratch or stand on the shoulders of giants? When you start
writing code you need to stick to a development cycle. Be methodical.

Functional Decomposition & Procedural Programming

Marymount University IT-566-A: Computer Scripting Techniques 16

Module A

Module B Module C Module D

Module EModule F

Dependency
Direction

Functional Decomposition & Procedural Programming

• Naturally follows from traditional
business analysis techniques

• Process and feature requirements
map to modules and functions

• Quick way to implement features
• Easy to understand – Notionally

• Top-down dependencies
• Module A depends on submodules

• A change to a submodule…
• …affects calling module

• Difficult if not impossible to isolate
modules for reuse

• Hidden or unknown dependencies
may break code in unexpected
ways

• New features require modifying
existing code

Marymount University IT-566-A: Computer Scripting Techniques 17

Pros Cons

Object-Oriented

Marymount University IT-566-A: Computer Scripting Techniques 18

Class A

<<Abstract>>

Class B

<<Abstract>>

Class C

<<Abstract>>

Subclass Subclass

Subclass Subclass
Subclass Subclass

Dependency
Direction

Object-Oriented Analysis, Design, and Programming

• Model interaction between real
world objects

• Isomorphic Mapping
• Stable, well-defined abstractions
• Extend class vs. modify code to

add functionality
• Open Closed Principle (OCP)

• Inverted dependency hierarchy
• Dependency Inversion Principle

(DIP)

• Steep learning curve
• Takes practice to get high-level

abstractions right
• Programs tend to have more

boilerplate code
• Language needs to support

accepted OOP features
• Encapsulation
• Virtual Calling
• …

Marymount University IT-566-A: Computer Scripting Techniques 19

Pros Cons

Development Cycle

Marymount University IT-566-A: Computer Scripting Techniques 20

Plan Design to the point where you can start coding. Do not attempt to design everything up front. The idea
here is to keep your design flexible and open to change.

Code Implement what you have designed.

Test Thoroughly test each section or module of source code. The idea here is to try to break it before it has
a chance to break your application. Write unit tests. Aim for >85% code coverage. When you write a
piece of code ask yourself, “How can I test this?” If testing seems difficult or impossible, perhaps you
need to refactor.

Integration &
Regression

Testing

As you iterate over each development sprint perform integration and regression testing. This simply
means as you create individual pieces of functionality in your application, start testing them together
where possible.

Refactor When you encounter difficulties with your design and implementation, or you think of a better way of
doing something, make necessary improvements.

Code Stages

Marymount University IT-566-A: Computer Scripting Techniques 21

Stage A.K.A. Description

Just Get It
Working

Ugly Baby
Gnarly Toenail

Works. Proof of concept. Full of code smells. Not pretty. Not optimal. Influenced
by bad habits. Untested. Exploitable. Bad formatting. No comments. Magic
values. Hard to understand. Impossible to change without breaking something.

Transitional Conformant Starting to look like Python. Best practices. Self commenting. Consistent naming
convention.

Idiomatic Beautiful Code Well architected. Well structured. More efficient. Minimally coupled, Maximally
cohesive. Easy to comprehend. Easy to modify.

Optimized Quality Without A
Name (QWAN)

Every statement analyzed for speed and resource usage. Optimized for
maximum efficiency.

How To Learn Python
or

Any Programming Language

Marymount University IT-566-A: Computer Scripting Techniques 23

Programming In Python Isn’t Hard

Programming In Python Is Hard

Marymount University IT-566-A: Computer Scripting Techniques 24

Hard isn’t really the right word, but…

You’ll spend way more time and
effort learning to program vs.
learning Python.

Marymount University IT-566-A: Computer Scripting Techniques 25

If you’re new to programming, you’re learning two
new concepts: 1. How to program, and 2. Python.
That’s hard.

Once you learn how to program, learning
another programming language is easy.

But there are caveats…

Marymount University IT-566-A: Computer Scripting Techniques 26

Depends on 1. Your first programming language, and 2. The
paradigm it supported, and you adopted, to design and
implement your programs.

By paradigm I mean:
• Imperitive

• Machine Code
• Assembly
• Procedural
• Object-Oriented

• Declarative
• Functional

What’s The Difference?
• Imperitive

• Step-by-Step
• Control Flow (Explicit)

• Declarative
• Data Flow
• Desired Results

Marymount University IT-566-A: Computer Scripting Techniques 27

Python Supports Multiple Paradigms to Certain Degrees

Imperative
Procedural

Imperative
Object-Oriented

Declarative
Functional

Dynamic Typing
(No Static Typing)

No Encapsulation

Iterators

Lambda, map()

Not Purely Functional, but
Functions are First Class Objects

To Learn Python — Learn [How To…]
• Find Answers

• Python Documents
• Google
• YouTube

• Organize Your Code
• Packages
• Modules
• Classes
• Functions

• Create Code
• IDE

• Format Code
• PEP 8

• Run Programs
• Debug Code

Marymount University IT-566-A: Computer Scripting Techniques 28

• Test Code
• Name Things
• Store data in:

• Variables
• Constants

• Scoping Rules
• Operators
• Loop (Iterate)

• for
• while

• Branch (Conditions)
• if/else
• match/case

• Data Structures
• Tuples
• Lists
• Dictionaries
• Sets

• Built-In Functions
• Data Input/Output (I/O)
• File Processing
• Handle Exceptions
• Use 3rd Party Libraries
• Break Old Habits

• Python Idioms

Pro Tips

• Don’t Start At the Computer
• Ever write an essay?
• Before you sit down to write code…

• You should have a good idea how to proceed

• Think Algorithm First
• Write comments in plain English

• Pseudo Code
• Becomes intuitive over time

• Translate comments into code
• Run Early and Often

• Fix the first error first
• Then try again

Marymount University IT-566-A: Computer Scripting Techniques 29

But Most Importantly…
When Searching for Help — Ask Google
Straight Up What You’re Trying To Do In
Clearest Most Direct Way Possible

Expert

Advice

Fundamentals

PEP-8 — Style Guide for Python Code

Marymount University IT-566-A: Computer Scripting Techniques 31

https://peps.python.org/pep-0008/

Focus On…
• Code Layout
• Consistent String Quoting
• Naming Conventions

• Packages
• Modules
• Functions
• Classes
• Methods
• Variables
• Constants

• Plugins Can Help with
Formatting

https://peps.python.org/pep-0008/

Doc Comments

Marymount University IT-566-A: Computer Scripting Techniques 32

pydocstyle
http://www.pydocstyle.org

• Validates doc comments
• Installation:

pipenv install –dev pydocstyle
• Run

pipenv run pydocstyle src/example.py

http://www.pydocstyle.org/

Classes & Methods

• Classes
• Logical Organization and Way of Thinking

• Object-Oriented Analysis, Design, and Programming (OOAD & P)
• Physical Namespace for Methods and Attributes
• Group Together Related Code and Data

• Methods
• Functions Associated with a Class

• A function defined outside of a class is called a function
• A function defined inside of a class is called a method

• A Program is an Interaction Between Objects
• Rule of Thumb

• One Class Per Module — For Sanity
• Module and Class Have Same Name

• Module name all lowercase | Class name begins with upper case letter

Marymount University IT-566-A: Computer Scripting Techniques 33

OOAD&P Design Language — UML

Marymount University IT-566-A: Computer Scripting Techniques 34

UML — Unified Modeling Language

Class Base Class

Derived Class

Abstract Base Class

Derived Class

<<Abstract>>

is a is a

UML is more than just pictures — I mostly use it to communicate designs

Sequence Types: Lists, Tuples, Ranges
https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range

List []
• An iterable, mutable sequence of objects
• List is an object with methods

[1,2,3,4].append(5) => [1,2,3,4,5]
• Some operations on lists performed via global built-in functions

len([1,2,3,4,5]) => 5
min([1,2,3,4,5]) => 1

• Accessed via index
[1,2,3,4,5][0] => 1

• Strings can be treated like lists but are immutable
• Don’t support operations that would change the state
’Hello, World!’[0] => H

Marymount University IT-566-A: Computer Scripting Techniques 35

https://docs.python.org/3/library/stdtypes.html

Dictionaries
https://docs.python.org/3/tutorial/datastructures.html#dictionaries

• Dictionary { }
• Iterable set of key:value pairs
• Keys must be an immutable type

• string
• integer
• tuple (As long as it contains immutable types)

• Operations
ages = {} # Create empty dictionary
ages = {’Bill’:23, ‘Steve’:42, …} # Create with data
ages[‘Bill’] # Access via key => 23
list(ages) # Returns list of keys
ages[‘Coralie’] = 32 # Add new key:value

Marymount University IT-566-A: Computer Scripting Techniques 36

https://docs.python.org/3/tutorial/datastructures.html

File Input/Output (I/O)
https://docs.python.org/3/tutorial/inputoutput.html#reading-and-writing-files
• Easy-Peasy in Python

f = open(‘names.txt’, ’w’, encoding=‘utf-8’)
f.write(‘Guido van Rossum’)
f.close()

• But Use with Keyword (Automatic Resource Cleanup)
with open(‘names.txt’, ’r’, encoding=‘utf-8’) as f:

names_data = f.read()

Marymount University IT-566-A: Computer Scripting Techniques 37

https://docs.python.org/3/tutorial/inputoutput.html

Exceptions

https://docs.python.org/3/tutorial/errors.html
• Lots Of Things Can Go Wrong In Code

• File I/O Errors
• Network Errors
• Just to list a few…

• Exception
• Error Detected During Execution

• try/except Statement
• Place Code in Try Block
• Handle Exceptions in Except Block

https://docs.python.org/3/library/exceptions.html#concrete-exceptions

Marymount University IT-566-A: Computer Scripting Techniques 38

https://docs.python.org/3/tutorial/errors.html
https://docs.python.org/3/library/exceptions.html

Processing
Command-Line Arguments

with

argparse

Backup Slides

Marymount University IT-566-A: Computer Scripting Techniques 41

