
Computer Scripting Techniques with Python © 2023 Pulp Free Press 3

0
0
0
0
0
0
0
1

00000001

Ch-1: Part 1 Preliminaries: Baseline Development Environment

Learning Objectives
• State the importance of a properly configured development environment
• Configure folder settings in to show hidden files and suffixes
• Install HomeBrew package manager for macOS
• Identify package managers for Linux and Windows
• Install and configure Python
• Set environment variables in macOS, Linux, and Windows
• Install and configure Visual Studio Code
• Select and install Python development extensions in Visual Studio Code
• Install and configure Sublime Text
• Perform basic text editing with VIM
• Edit text files with Nano
• Install ITerm2 in macOS
• Configure important .bash_profile settings
• Configure Bash aliases

CHAPTER 1
Part 1 Preliminaries: Baseline

Development Environment

Chapter 1: Part 1 Preliminaries: Baseline Development Environment

4 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
0
1

Introduction

In this chapter I show you how to set up and configure your baseline development environ-
ment. I use the term development environment to refer to the set of hardware and software tools
required to develop applications outside of the programming language itself. It’s a baseline setup
in that it provides a foundation upon which additional tools can be added and configured to meet
the needs required in subsequent parts of the book.

A lot of what you’ll learn in this chapter can best be described as incidental system adminis-
tration. Every competent software developer needs to know enough system administration to get
stuff done. You’ll configure operating system settings and environment variables, install and con-
figure software, and ensure your development environment is ready in all respects to support soft-
ware development.

In this chapter and throughout the book I will focus on three operating systems: macOS (A
UNIX® certified OS), Linux, and Windows. I do this because students in my course come to class
with laptops running these three operating systems. I generally spend two whole class sessions
working with them to ensure their computers are configured correctly to support software devel-
opment.

The primary goal of this effort is to ensure that when you download code examples from the
book’s GitHub repository they run as expected regardless of operating system you happen to be
using. The secondary but no less important goal is to establish a familiar development experience
across all three operating system platforms, which is something you may find helpful.

As you progress through this chapter you need only focus on the sections related to your oper-
ating system(s). However, to facilitate the secondary goal mentioned above, I will use the bash
shell on all three operating systems. This may force you out of your comfort zone especially if
you are relatively new to programming and have never used a terminal. I assume readers have no
familiarity with terminal usage of any kind but it’s a critical skill to cultivate as a software devel-
oper.

Let’s begin with some initial housekeeping...

1 Initial Housekeeping

This section guides you through some basic system configuration tasks that makes your com-
puter developer friendly. Note that I will use the terms folder and directory interchangeably
throughout the text. Let’s start with the most important thing you can do to eliminate potential
headaches regardless of what type of operating system you’re using.

1.1 No Spaces In Home Directory Name

There should be no spaces in your home directory name. This holds true for all operating
systems but especially for Microsoft Windows. The reason is that some software installers and
development tools deal poorly with spaces in a user’s home directory name and this causes a lot
of grief. So, to avoid the headaches, ensure your home directory has no spaces. You have been
warned. (I would extend this advice to no spaces in any directory or filename, period.)

Chapter 1: Part 1 Preliminaries: Baseline Development Environment

Computer Scripting Techniques with Python © 2023 Pulp Free Press 5

0
0
0
0
0
0
0
1

1.2 Windows

If you use Microsoft Windows the following settings and suggestions will prevent a ton of
headaches.

1.2.1 Show Hidden Files and Folders

You need to see hidden files and folders. This applies to folders viewed via a graphical user
interface, which is how most novice programmers interact with an operating system until they
learn to embrace the power of a terminal. You can open any folder to do this. On the taskbar you
should see a folder icon as shown in figure 1-1.

Referring to figure 1-1 — Click on the folder icon to open File Explorer as shown in figure 1-
2.

Referring to figure 1-2 — By default, File Explorer opens the Quick access view, which lists
frequently accessed items. Click on the View tab to reveal the view options then check the File
name extensions and Hidden items check boxes as shown in figure 1-3.

Referring to figure 1-3 — While you’re at it, change to the Details Layout then navigate to
your home folder, which can be found in This PC > Local Disk(C:) > Users > username, where
username is the account you use to log into your computer. See figure 1-4.

Referring to figure 1-4 — What you see in the left-hand column and the items listed under
This PC may be different from what you see here. I have external hard drives attached to my
machine. In the right-hand column you’ll see the items in your user account’s home folder. Locate
the AppData folder, which will appear lightly grayed out. The AppData folder is a hidden folder
and is where installers will often install software if you don’t provide an explicit installation loca-
tion. Being able to see hidden files and folders will save you hours of searching and banging your
head against your desk. OK, let’s now add some handy shortcuts to the desktop and taskbar.

Figure 1-1: Windows Taskbar with Folder Icon

Figure 1-2: Windows File Explorer

Chapter 1: Part 1 Preliminaries: Baseline Development Environment

6 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
0
1

1.2.2 Handy Desktop and Taskbar Shortcuts

It’s super helpful to add shortcuts to frequently used applications on the desktop and taskbar.
Let’s start with the Command Prompt. In the taskbar search box type cmd. This will locate the
Command Prompt application and display a pop-up window with some choices as shown in fig-
ure 1-5.

Referring to figure 1-5 — In the right-hand column click Pin to Start and Pin to taskbar.
You should see the Command Prompt icon appear in the taskbar. Next, click Open file location.
This will open a window with a list of Windows System Start Menu items as shown in figure 1-6.

Referring to figure 1-6 — Right-click on the Command Prompt shortcut and from the pop-up
menu select Send to > Desktop (create shortcut) as shown in figure 1-7.

Referring to figure 1-7 — This will send a new Command Prompt shortcut to the desktop.

Figure 1-3: View Options Set

Figure 1-4: File Explorer Details Layout in User’s Home Directory

Chapter 1: Part 1 Preliminaries: Baseline Development Environment

Computer Scripting Techniques with Python © 2023 Pulp Free Press 7

0
0
0
0
0
0
0
1

1.2.3 Additional Application Shortcuts — For Now

OK, repeat what you just did with the Command Prompt for the following applications:
• PowerShell
• Services
• Control Panel
• Computer Management

Figure 1-5: Searching for cmd

Figure 1-6: List of Shortcuts

Chapter 1: Part 1 Preliminaries: Baseline Development Environment

8 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
0
1

As you add more software development applications, you’ll want to add shortcuts to these as
well. I’ll let you know when I think it’s a good idea to add a shortcut for something to your task-
bar and desktop.

1.2.4 Drive and Folder Shortcuts

A few other helpful shortcuts to have on your desktop are ones that provide quick access to
your hard drive and important folders. To add a shortcut to the C drive click on the taskbar folder
icon to open File Explorer, locate Local Disk (C:) in the left-hand column, and click and drag it to
the desktop as shown in figure 1-8.

Figure 1-7: Send Command Prompt Shortcut to Desktop

Figure 1-8: Drag and Drop C Drive to Create Shortcut on Desktop

Chapter 1: Part 1 Preliminaries: Baseline Development Environment

Computer Scripting Techniques with Python © 2023 Pulp Free Press 9

0
0
0
0
0
0
0
1

Referring to figure 1-8 — Release the mouse button to create the link on the desktop. Repeat
this for any drives and folders you want quick access to, such as a development projects folder,
which I discuss in the next section.

1.2.5 Create Development Projects Folder

You’ll find it convenient to have all your development projects centrally located. I like to store
my projects in a folder called dev located in my home directory. To create your dev folder, first
navigate to your home directory, which is This PC -> Local Disk(C:) > Users > username, where
username is the account you used to log in to your computer. Now, there are a few ways to skin
the cat here. Click on the Home tab and click the New folder icon, or right-click in the right-hand
column and select New > Folder as shown in figure 1-9.

Referring to figure 1-9 — Name the new folder dev. You can name it anything you like, actu-
ally, but I’m going to assume you named it dev going forward.

1.3 macOS

The macOS user interface can be configured similarly to Microsoft Windows. In this section,
I’ll show you how to show hidden files and folders, reveal file suffixes, and show the hard drive
and other attached media on the Finder desktop.

Figure 1-9: Creating a New Folder

Chapter 1: Part 1 Preliminaries: Baseline Development Environment

10 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
0
1

1.3.1 Show Hard Drives, Connected Servers, and file suffixes

To show your hard drive and any connected drives on the Finder desktop, click on the desktop
to make it the active application and then from the Finder menu select Preferences or Settings to
open the Finder Preferences panel as shown in figure 1-10.

Referring to figure 1-10 — Shown are both the Finder Preferences General and Advanced
tabs. In the General tab check all the boxes; in the Advanced tab check the top four boxes. Feel
free to customize further as you see fit.

1.3.2 Add Application Aliases To Finder Desktop and Dock

You’ll want to add frequently accessed applications to the desktop and dock. I’ll show you
how to add the Terminal application and suggest others you can add yourself.

Double-click your hard drive icon, which should now be visible in the upper right-hand corner
of your desktop, navigate to the Applications > Utilities folder and locate the Terminal applica-
tion. (Terminal.app if you checked Show all filename extensions in Finder Preferences.) Drag the
Terminal icon to the dock to add an alias as shown in figure 1-11.

To add a Terminal alias on the desktop, right-click on the Terminal application in the Utilities
folder and from the pop-up menu select Make alias as shown in figure 1-12.

Referring to figure 1-12 — This will create an alias in the same directory. Simply drag the
alias to the desktop. You can change the name of the alias or leave it as-is. I like to remove the
name ‘alias’ but it’s not necessary.

1.3.3 Show Hidden Files and Folders

Double-click your hard drive. This should launch a Finder window as shown in figure 1-13.

Figure 1-10: Finder Preferences General and Advanced Tabs

Figure 1-11: Terminal Alias Added to macOS Dock

Chapter 1: Part 1 Preliminaries: Baseline Development Environment

Computer Scripting Techniques with Python © 2023 Pulp Free Press 11

0
0
0
0
0
0
0
1

Referring to figure 1-13 — If you haven’t bothered to change the default window view this is
what you’d normally see when you open a finder window: big icons. I recommend switching to
list view as shown in figure 1-14.

Figure 1-12: Right-Click on Application to Create Alias

Figure 1-13: Default Finder Window Icon View

Figure 1-14: List View

Chapter 1: Part 1 Preliminaries: Baseline Development Environment

12 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
0
1

Referring to figure 1-14 — Oh yeah, that’s better. Now, navigate to your home directory. This
is in Users > username, where username is the name you use to log in to your computer. If you’re
the only one who uses your computer or there’s only one account on your computer then there
will be only two or three folders in the Users folder as shown in figure 1-15.

Referring to figure 1-15 — This shows the contents of my Users folder. There’s a Shared
folder and a folder named swodog, which is my home folder and also the name of the account I
use to log into my computer. Note: You may also have a folder named Guest if you’ve ever
enabled the Guest account. — OK, navigate to your home directory. Mine is shown in figure 1-16.

Referring to figure 1-16 — This represents a fresh install of the macOS operating system. You
may have more files and folders in your home directory. To show hidden files and folders make
sure your home directory window is selected and type these three keys: Command + Shift + ‘.’
— which means press and hold the Command (cmd) key followed by the Shift key and finally
the dot or period key so that all three keys are pressed down at the same time — then let up. Hid-
den files and folders will appear light gray as shown in figure 1-17.

Referring to figure 1-17 — As you install and configure software and various tools, you’ll see
more hidden files and folders appear in your home directory. A word of caution — with great
power comes great responsibility. Apple hides some of these files and folders for good reason.
Tread cautiously. Also, this is only in effect until you either log out or restart the computer. I don’t
think that’s an issue. When you learn about terminals in the next section, you’ll be able to list hid-
den files and folders any time you like. And really, you don’t always need to see them, just know
how to see them when you need to. To hide them again simply repeat the Command + Shift + ‘.’
key command.

Figure 1-15: Users Folder

Figure 1-16: My Home Directory

Chapter 1: Part 1 Preliminaries: Baseline Development Environment

Computer Scripting Techniques with Python © 2023 Pulp Free Press 13

0
0
0
0
0
0
0
1

1.3.4 Create Development Projects Folder

While you’re in your home directory create a new folder named dev. Simply right-click in
your home directory window and select New Folder from the pop-up menu. To speed access to
your dev folder create an alias and drag it to the desktop.

1.3.5 Open Finder Windows In Home Directory

Return once again to the Finder Preferences General Tab and set the New Finder windows
show: dropdown to your home directory as shown in figure 1-18.

Referring to figure 1-18 — To test this out select File > New Finder Window from the main
menu or use the keyboard shortcut Command + ‘N’ to open a new Finder window in your home
directory.

1.4 Linux

There are so many Linux variants in the wild there’s no telling which one you might be using,
so I’ll target Linux Mint, a Debian and Ubuntu derivative running the Cinnamon desktop. Linux
Mint is perhaps the most novice-friendly Linux there is and the Cinnamon desktop delivers a
look-and-feel mashup between macOS and Microsoft Windows. A fresh Linux Mint install with
the Cinnamon desktop comes fairly well configured as is shown in figure 1-19.

Figure 1-17: Hidden Files and Folders Appear as Light Gray Text

Figure 1-18: Set New Finder Windows to Open in Home Directory

Select your home direc-
tory via the dropdown

Chapter 1: Part 1 Preliminaries: Baseline Development Environment

14 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
0
1

Referring to figure 1-19 — You can see the desktop already has icons for the Computer and
the Home folder. There’s also a shortcut to the Terminal on the panel, which is Cinnamon’s ver-
sion of the dock or taskbar, although it’s hard to see in the image because its icon is black set
against a dark gray panel but you can just make out the white characters $_ which represent a
shell prompt.

1.4.1 View Hidden Files And Folders

To view hidden files and folders click the green folder located on the panel to launch the file
manager. Notice the file manager opens in your home directory. From the View menu check
Show Hidden Files or use the key combination Ctrl + H. While you’re at it, also from the View
menu, change the Sidebar to Tree. I find this most helpful. Finally, click the List layout icon.

1.4.2 Create Development Project Folder

Right-click in your home folder and select Create New Folder from the pop-up menu. Name
it dev.

1.4.3 Add Missing Icons To Desktop

What I don’t see on the desktop is a Trash or Recycle Bin icon. It’s probably not a big deal but
may as well show it. In the lower left-hand corner of the screen click the circular LM icon
(Menu) > System Settings > Desktop to display the desktop settings as shown in figure 1-20.

Referring to figure 1-20 — Click the buttons for Trash and Network to On. You want all the
buttons to be green. You should now see the Trash and Network icons on the desktop.

Figure 1-19: Linux Mint with Cinnamon Desktop

Chapter 1: Part 1 Preliminaries: Baseline Development Environment Terminal Applications

Computer Scripting Techniques with Python © 2023 Pulp Free Press 15

0
0
0
0
0
0
0
1

1.5 Parting Words

That about covers the initial housekeeping setup for all three operating systems. As you can
see, if you squint hard enough, they all look vaguely alike — for the most part. Of course you can
perform further customization and personalization if you so desire but this is a good start.

Quick Review

The purpose of initial housekeeping configuration is to provide quick access to frequently
used files, folders, and applications. Although terminology may be different between macOS,
Linux, and Microsoft Windows for similar concepts, the objectives are the same. You want to see
hidden files and folders, especially in your home directory, and you want quick and easy access to
frequently used applications, folders, and files on either your desktop, taskbar, or both.

The most important configuration you can make is to ensure your home directory name has no
spaces.

2 Terminal Applications

As a software developer, you will spend a lot of time using a terminal application to interact
with your computer. While using a terminal may come as a shock to novice programmers who
until now have only interacted with a computer via a graphical user interface, you will find, as
you gain skill and learn a handful of important commands, you can get way more done and move
a zillion times faster via the command line than fiddling with mice and menus. In many cases the
only way to get something done as a programmer is via the command line.

Figure 1-20: Desktop Settings

Terminal Applications Chapter 1: Part 1 Preliminaries: Baseline Development Environment

16 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
0
1

2.1 What Is A Terminal?

A terminal, terminal application, or terminal emulator is a text-based interface to a computer
that runs some type of command interpreter or command shell.

The names of these terminal apps will vary depending on the operating system. Linux and
macOS systems come with Terminal applications whereas Microsoft Windows ships with Pow-
erShell and Command Prompt applications. All these are referred to loosely as command-line
interfaces. Regardless of their name their purpose is the same; they enable a user to interact with
the computer via text commands.

Terminal applications are responsible for translating user input into a format (codes and con-
trol signals) the computer understands, and rendering output from the computer into a format the
user understands or desires. Examples of output formatting include character color and highlight-
ing, column arrangement, etc.

Terminal applications run a program called a shell. The shell determines what types of com-
mands can be entered and how they are interpreted.

2.1.1 Some History

In the early days of computing an operator entered commands and data directly into the com-
puter either via patch cables or switches. There were no operating systems or terminals. This
approach to human-computer interaction was both time consuming and error prone and was even-
tually followed by the use of dedicated teletype terminals as shown in figure 1-21.

Referring to figure 1-21 — A teletype is an electromechanical device which combines the fea-
tures of a typewriter and printer. A lot of the codes used to control a teletype are still used in pro-
grams today. One need only examine the ASCII table located in Appendix B for familiar
examples, which include the carriage return ‘\r’ and line feed or new line ‘\n’ characters. The
teletype also gave us an abbreviation still used today in UNIX® and Linux systems: tty.

Figure 1-21: Teletype Computer Terminal with Attached Paper Tape Punch/Reader

Chapter 1: Part 1 Preliminaries: Baseline Development Environment Terminal Applications

Computer Scripting Techniques with Python © 2023 Pulp Free Press 17

0
0
0
0
0
0
0
1

As computers evolved so too did the terminal devices used to work with them. Teletypes gave
way to terminals with an integrated or detachable keyboard and cathode ray tube (CRT) screen as
is shown in figure 1-22.

Referring to figure 1-22 — This is an example of a Digital Equipment Corporation (DEC)
Video Terminal 100 or VT100. This was an intelligent terminal in that it employed a microproces-
sor to assist with display formatting and keyboard processing. It did no processing on its own
other than to manage the screen and keyboard. The sole job of a terminal like this is to send input
to and receive output from the main computer, which would have been a DEC PDP, VAX, or
related system.

The VT100 still lives on today especially for those who use terminal applications on UNIX®
or Linux machines, namely that most terminal applications are actually terminal emulators and
can emulate a wide range of terminals, including the VT100.

You don’t generally need to worry what terminal your terminal application is emulating
because they are set to work properly by default with your operating system. However, if you
establish a remote connection to an older computer you may need to pay attention to the terminal
emulation setting.

Note that the evolution of terminals and other types of equipment used to interact with com-
puters developed along with the evolution of operating systems.

2.2 What Is A Shell?

A shell is a program your terminal launches when you log in to the computer. The shell dic-
tates what commands you can use and how you can string them together to get things done on the
machine.

Popular shells on UNIX®/Linux operating systems include the Born Again Shell (bash) and
the Z Shell (zsh). Different shells have different capabilities and features. You can automate tasks
using shell scripts, something you’ll learn how to do later in the book.

Figure 1-22: DEC VT100 Intelligent Terminal

Terminal Applications Chapter 1: Part 1 Preliminaries: Baseline Development Environment

18 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
0
1

You can also change the shell in UNIX® and Linux terminals but on Microsoft Windows the
included terminals and their shells are tightly coupled. PowerShell is more powerful and extensi-
ble than the Command Prompt but the later is still useful in its own right. You can automate tasks
in the Command Prompt by writing batch files which have a file suffix of (.bat). You can write
scripts in PowerShell and create custom commands called cmdlets in C#. PowerShell scripts have
the file suffix (.ps1).

2.3 Standardizing On Bash

I will use bash as the shell and shell scripting language of choice throughout this book. I will
use bash scripts to run Python programs and the bash scripts will run regardless of operating sys-
tem. This is not an issue on Linux and macOS, but on Windows you’ll need to install Git for Win-
dows to have a bash terminal.

2.4 Windows

This section explains how to install and configure Git for Windows, which provides a bash
terminal (mintty).

2.4.1 Git For Windows

To get a bash terminal on Windows 10 & 11 without installing the Windows Subsystem for
Linux (WSL), download and install Git for Windows, which is based on MSYS2 https://
www.msys2.org/docs/what-is-msys2/ and provides all the tools you need to perform Git Software
Configuration Management (Git SCM), which will come in handy when I discuss software con-
figuration management with Git and GitHub in Part II, Chapters 7 and 8.

2.4.1.1 Installation

On your Windows machine open a browser and navigate to https://gitforwindows.org and
click the Download button. Launch the installer and accept the default installation location. Click
Next and check the box at the top of the list to install additional icons on the desktop as shown in
figure 1-23.

Referring to figure 1-23 — Ensure the Additional icons box is checked and click the Next but-
ton. Click Next again until you arrive at the Choosing the default editor used by Git dialog as
shown in figure 1-24.

Referring to figure 1-24 — Accept the default editor (Vim) for now. You can change it later
after you install Sublime Text in the next section. Click the Next button to proceed. You’ll need to
make a decision on the Adjusting the name of the initial branch in new repositories dialog as
shown in figure 1-25.

Referring to figure 1-25 — Click the Override the default branch name for new reposito-
ries radio button and leave the name main. Click the Next button to show the Adjusting your
PATH environment dialog as shown in figure 1-26.

Referring to figure 1-26 — Click the middle radio button to use git from the command line
and also from 3rd party software. Click Next and accept the default settings for the remaining dia-
logs. On the last dialog Configuring experimental options leave both boxes unchecked. Click
the Install button. When installation completes, click the Finish button. You’ll see a Git Bash

https://gitforwindows.org
https://www.msys2.org/docs/what-is-msys2/
https://www.msys2.org/docs/what-is-msys2/
https://gitforwindows.org

Chapter 1: Part 1 Preliminaries: Baseline Development Environment Terminal Applications

Computer Scripting Techniques with Python © 2023 Pulp Free Press 19

0
0
0
0
0
0
0
1

Figure 1-23: Check Additional Icons Box

Figure 1-24: Use Vim as Default Editor

Figure 1-25: Check the Override Button and Name New Branches main

Terminal Applications Chapter 1: Part 1 Preliminaries: Baseline Development Environment

20 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
0
1

icon on your desktop. Right click the icon and from the pop-up menu select Pin to taskbar.
Launch Git Bash to open a terminal window as shown in figure 1-27.

Referring to figure 1-27 — At the command prompt type echo $SHELL to see what shell is
running. The output will be /usr/bin/bash. You now have a bash shell running in a terminal on
Microsoft Windows.

2.4.1.2 Changing Terminal Window Properties

You can customize many terminal window properties. Click on the Git Bash icon in the upper
left corner of the terminal window and select Options... from the dropdown menu as shown in
figure 1-28. This will open the Options dialog shown in figure 1-29.

Referring to figure 1-29 — Listed in the left-hand column are option groups. I’ve selected the
Terminal options group to show you that the default terminal is set to xterm. You can see VT100 is
also listed on the dropdown list. Leave xterm as the default emulation and explore the other option
groups. I like to change the default terminal window size to make it larger when it opens as well
as the color scheme.

2.4.2 Exploring The Git Bash (mintty) Terminal

Launch your Git Bash terminal if it’s not already open. Notice it opens in your home directory,
the path to which is displayed in the upper-right corner of the terminal window’s title bar as
shown in figure 1-30.

Figure 1-26: Click the Middle Radio Button

Figure 1-27: Git Bash Terminal Running on Windows

Chapter 1: Part 1 Preliminaries: Baseline Development Environment Terminal Applications

Computer Scripting Techniques with Python © 2023 Pulp Free Press 21

0
0
0
0
0
0
0
1

Figure 1-28: Git Bash Terminal Window Options

Figure 1-29: Git Bash Terminal Options

Figure 1-30: Exploring The Git Bash (mintty) Terminal

Terminal Applications Chapter 1: Part 1 Preliminaries: Baseline Development Environment

22 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
0
1

Referring to figure 1-30 — To quickly find out what directory you’re in you can also type pwd
at the command-line prompt. The command pwd stands for print working directory. Also note that
the tilde ‘~’ character represents your home directory.

To change to a different directory use the command cd, which stands for change directory. At
the prompt type cd dev to change to the dev directory. You’ll see the path change in the title bar
as well as in the terminal to ~/dev. To return to your home directory type cd.

2.4.3 Parting Thoughts On Git For Windows

Git for Windows and the Git Bash terminal provide all the bash features you’ll need for this
book. It’s not a full-blown Linux system but it supports enough commands and features to enable
bash scripts to run on Windows as well as perform Git repository operations.

2.5 macOS

MacOS comes with a perfectly good terminal emulator but I prefer to use iTerm2 and if you’re
a Mac user I think you’ll like it, too. But first, launch the default terminal application and make
bash your default shell with the following command:
chsh -s /bin/bash

Enter your password when prompted and hit return. Close the terminal window

2.5.1 Install iTerm2

Navigate to the iTerm2 website https://iterm2.com and click the Download button. It down-
loads a zip file and automatically unpacks in your Downloads folder. Navigate to your Downloads
folder and drag the iTerm.app file to your ~/Applications folder. That is, drag the file to the Appli-
cations folder located in your home directory. If you don’t have an Applications folder in your
home directory, launch the Terminal application and at the prompt type mkdir Applications to
create it. The command mkdir stands for make directory. Now, copy the iTerm.app file into your
~/Applications folder. Your home directory should now look like figure 1-31.

Referring to figure 1-31 — Drag iTerm to the dock, then make an alias and drag it to the desk-
top. Launch iTerm2. You’ll see several pop-up messages, one that warns iTerm is an application
downloaded from the Internet. Click Open. Then you’ll see several pop-ups seemingly all at once
as shown in figure 1-32.

Figure 1-31: Home Directory with Applications Folder and iTerm.app

https://iterm2.com
https://iterm2.com

Chapter 1: Part 1 Preliminaries: Baseline Development Environment Terminal Applications

Computer Scripting Techniques with Python © 2023 Pulp Free Press 23

0
0
0
0
0
0
0
1

Referring to figure 1-32 — Allow iTerm Notifications. In the Check for updates automati-
cally dialog click Check Automatically. At that point you’ll see the iTerm terminal window
appear.

Finally, in the dialog that says The “pip3” command requires the command-line developer
tools, click the Cancel button. We have bigger fish to fry.

2.5.2 Install Apple Xcode And Command-Line Developer Tools

Xcode is Apple’s integrated development environment (IDE) for building software for Apple
platforms. The version of Xcode and the command-line tools you need to install depends on the
version of macOS you are running. If you’re running the latest version of macOS you will be able
to obtain Xcode and the command-line tools from the Apple App Store. Note that Xcode and the
corresponding command-line tools are separate downloads.

If you’re running older versions of macOS you’ll need to download the corresponding version
of Xcode and command-line tools from Apple’s developer website: https://developer.apple.com
The tools and examples in this book are tested against macOS versions from Mojave (10.14.6)
through Ventura (13). Table 1-1 lists macOS versions from Mojave onwards with their corre-
sponding supported Xcode versions.

Figure 1-32: iTerm Popups

https://developer.apple.com
https://developer.apple.com

Terminal Applications Chapter 1: Part 1 Preliminaries: Baseline Development Environment

24 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
0
1

Referring to table 1-1 — I recommend visiting the Xcode Releases website https://xcodere-
leases.com because they provide direct download links to the tools on Apple’s Developer website,
which saves you a ton of time searching. Also note that every Xcode version has a corresponding
version of the Xcode command-line tools. You need to download and install those as well.

When you first launch Xcode you’ll see a pop-up dialog saying you need to install additional
components as shown in figure 1-33.

Referring to figure 1-33 — Click Install to install the additional components. When installa-
tion completes, Xcode will launch. Install the Xcode command-line tools and when you’ve com-
pleted that task you can return to iTerm2 terminal configuration.

2.5.3 iTerm2 Terminal Configuration

When you’ve completed Xcode and Xcode command-line tools installation launch iTerm2.
The first thing you’ll notice is there are a whole lot more menu items to choose from verses what
the default macOS Terminal application offers as is shown in figure 1-34.

Referring to figure 1-34 — First thing you’ll want to do is to install Shell Integration. From
the iTerm2 menu select Install Shell Integration. This will open a pop-up dialog as shown in
figure 1-35.

Referring to figure 1-35 — Leave the Also install iTerm2 Utilities box checked and click
Continue. On the next window click Download and Run Installer then Continue. You will see
scripts execute in the iTerm2 terminal window and when installation completes you’ll see an
Installation Complete dialog. Click OK to complete installation. Quit iTerm2 and relaunch.

macOS Version Xcode Version

Ventura (13+) Xcode 14.2

Monterey (12.5+) Xcode 14.1

Big Sur (11.3+) Xcode 13.2.1

Catalina (10.15.7) Xcode 12.4

Mojave (10.14.6) Xcode 11.3.1

Source — Xcode Releases: https://xcodereleases.com

Table 1-1: macOS Versions and Supported Xcode Versions

Figure 1-33: Install Additional Xcode Components

https://xcodereleases.com
https://xcodereleases.com

Chapter 1: Part 1 Preliminaries: Baseline Development Environment Terminal Applications

Computer Scripting Techniques with Python © 2023 Pulp Free Press 25

0
0
0
0
0
0
0
1

2.5.3.1 iTerm2 Preferences

Click iTerm2 > Preferences to open the Preferences dialog as shown in figure 1-36.

Referring to figure 1-36 — There are too many iTerm2 configuration options to cover in this
chapter and much depends on your particular preferences with regards to how you want the termi-
nal to look and behave. I do recommend tweaking the color scheme, font size, and window
dimensions to your suit your taste. In this regard, iTerm2 is similar to Terminal. One particular
feature I like and use which is unique to iTerm2 is the status bar. To show the status bar, click on
the Profiles icon then select the Session tab and at the bottom of the window check the Status bar
enabled check box as shown in figure 1-37.

Figure 1-34: iTerm2 Menu Bar Choices

Figure 1-35: Install Shell Integration Dialog Window

Figure 1-36: iTerm2 Preferences Dialog

Terminal Applications Chapter 1: Part 1 Preliminaries: Baseline Development Environment

26 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
0
1

Referring to figure 1-37 — Enabling the status bar will also enable the Configure Status Bar
button. Go ahead and click that button to launch the status bar configuration window shown in
figure 1-38.

Referring to figure 1-38 — You’ll enjoy playing around with status bar configuration. To add
a component to the status bar simply drag it from the Component Menu panel to the Active Com-
ponents panel. I like to add the Current Directory, Git State, Current Date & Time, and Search
components. I add a space component in the middle. To set the component background color click
the Advanced tab. If the iTerm2 terminal window is open you’ll see the status bar components
added in real time. I also like to set Auto-Rainbow to Automatic. When done, click Configure
Component and click OK to return to the Profiles > Session tab.

Figure 1-37: Enabling iTerm2 Status Bar

Figure 1-38: iTerm2 Status Bar Configuration Dialog

Chapter 1: Part 1 Preliminaries: Baseline Development Environment Terminal Applications

Computer Scripting Techniques with Python © 2023 Pulp Free Press 27

0
0
0
0
0
0
0
1

If you used the components selected in figure 1-38 along with a light-gray component back-
ground your iTerm2 terminal should look like figure 1-39.

Referring to figure 1-39 — You can see the status bar along the top of the terminal window.
One feature of Shell Integration is Marks. You can barely make out a small colored triangle to the
left of each shell prompt line. On the first line I entered the ls command. It executed with no
errors so the mark on the left is blue. At the next prompt I entered the cls command, which clears
the screen in a Windows command prompt but is not a native command in UNIX® or Linux so
using it results in an error and a red triangle mark. To visit previous marks type the Command +
Shift + Up-Arrow keys. To move forward through marks type the Command + Shift + Down -
Arrow keys. To select the result of the last command type Command + Shift + A. That comes in
pretty handy at times. Now, for fun, at the prompt type it2attention fireworks. If you saw
fireworks explode across your screen then you can rest assured iTerm2 shell integration and utili-
ties are properly installed.

2.6 Linux

A good terminal for Linux is Terminator: https://terminator-gtk3.readthedocs.io/en/latest/

2.6.1 Install And Configure Terminator

Open a Linux terminal and type apt search terminator. You should see it listed. To install
Terminator type apt install terminator. When installation is complete close the terminal
window, open Menu, and in the search bar start typing terminator. You’ll see it appear below the
Terminal application as shown in figure 1-40.

Referring to figure 1-40 — Right-click Terminator and select Add to panel and Add to desk-
top. Launch Terminator. You will notice right off the bat it appears different from the standard
Terminal application that ships with Linux. Right-click in the body of the Terminator window and
select Preferences to open the Terminator Preferences dialog as shown in figure 1-41.

Referring to figure 1-41 — I have the Profiles > Colors tab selected. You probably want to try
out different color schemes. I like Ambience. I find the blue of the Linux color scheme too hard to
read especially against a black background. If you are into retro tech, you can set green text on a
black background, but that’s pretty hardcore.

Figure 1-39: iTerm2 Terminal Window with Status Bar

https://terminator-gtk3.readthedocs.io/en/latest/

Terminal Applications Chapter 1: Part 1 Preliminaries: Baseline Development Environment

28 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
0
1

I recommend you explore Terminator Preferences and see what’s available. If you’re new to
terminals you may not understand everything you see nor the purpose of the setting, and that’s
OK. The best way to learn new concepts is in measured doses.

2.7 Parting Thoughts On Terminals And Shells

With the exception of Microsoft Windows, the default terminal applications that ship with
macOS and Linux will work just fine for most of what you might need to accomplish, but the
advanced features found in iTerm2 and Terminator will come in handy as you grow your terminal

Figure 1-40: Locating Terminator Application

Figure 1-41: Terminator Preferences Dialog on Colors Tab

Chapter 1: Part 1 Preliminaries: Baseline Development Environment Text Editors

Computer Scripting Techniques with Python © 2023 Pulp Free Press 29

0
0
0
0
0
0
0
1

chops. Features like split screens and multiple sessions alleviate the need to have multiple termi-
nal windows open and cluttering your desktop.

There are other terminal emulators besides iTerm2 and Terminator and developers have their
favorites. In this chapter I presented a few popular options but you may have different tastes. Feel
free to strike out on your own. The important thing is that you’re able to use a terminal running
the bash shell to interact with your computer via text commands.

The Git Bash (mintty) terminal on Microsoft Windows is the lowest common denominator.
All examples in this book that require bash will work on the Git Bash terminal. Having said that, I
will be favoring macOS and iTerm2 to show results of running bash scripts and Python examples
as that is my operating system and terminal of choice. I will highlight where necessary any differ-
ences between operating systems and terminal configurations.

As for shells there are others besides bash and like terminal applications developers often dis-
play feverish emotions regarding their favorites. A few newer shells include the Z Shell (zsh) and
the fish shell. The Z Shell (zsh) is the default shell on newer versions of macOS. I recommend
setting the default shell to bash, especially if you’re new to bash scripting, to prevent potential
headaches and to ensure the scripts you find in this book fun as expected.

The version of bash that ships with macOS is long in the tooth but works perfectly fine. Still,
I’ll be updating it to the latest version in the section on package managers below, just to show
macOS users how it’s done.

Quick Review

A terminal supports text based human/computer interaction. The purpose of a terminal is to
present user input to the computer and render output from the computer. Most terminal applica-
tions are actually terminal emulators and if necessary can be used to connect to older computer
systems that require specific terminal types.

A shell is a program launched by the terminal when you log in. The shell dictates what types
of commands and scripts can be executed. The bash shell is a popular shell, which is used
throughout this book, but there are others.

Together, the terminal and the shell provide a command-line interface to the computer. The
prompt is the line on which you enter shell commands and usually indicated by a dollar sign ‘$’ or
hash tag ‘#’ character depending on whether you’re logged in as a user or as root. Cursor position
is indicated with an underscore ‘_’ or box ‘█’character. You can customize the prompt via termi-
nal preferences and shell profile settings.

The Git Bash (mintty) terminal and its version of the bash shell will serve as the lowest com-
mon denominator for all bash script examples in this book.

3 Text Editors

A plain, ol’ text editor is a must have tool for a software developer. You’ll need a good text
editor to edit code and scripts and to make long comments on Git commits. The text editors I rec-
ommend in this section run on all three platforms and in fact the first two editors I discuss, vi and
nano come pre-installed on macOS and Linux and are included with Git for Windows.

Text Editors Chapter 1: Part 1 Preliminaries: Baseline Development Environment

30 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
0
1

3.1 Vi/Vim

Vi or Vim is an extremely powerful console-based text editor found on all modern UNIX and
Linux distributions. It also comes with Git for Windows. Vim stands for Vi IMproved and is the
default flavor of Vi shipped with modern UNIX-like operating systems with versions that run
natively on Microsoft Windows as well. Figure 1-42 shows Vim running in the Git Bash terminal
window.

Referring to figure 1-42 — To launch Vim type vi or vim at the terminal prompt and hit enter.
The vi command is linked to vim.

Vim comes straight out the box in a bare-bones configuration which is controlled almost
exclusively via keyboard commands. Vim has a steep learning curve but learning Vim pays pow-
erful dividends, especially if you work with remote virtual machines hosted in the cloud running
Linux. Vim is a common denominator in that you can rest assured that some form of Vi or Vim
will be available regardless of what flavor of UNIX or Linux greets you when you log in.

3.1.1 Basic Usage

Learning all the features and commands of Vim requires a fairly significant investment of
time. It’s not easy nor intuitive, but you can get stuff done in a pinch with just a handful of com-
mands. For starters, you need to know the four modes of Vim.

3.1.1.1 Four Primary Vim Modes

Vim has four primary modes: Normal, Insert, Command, and Visual. First though, if you
launched Vim earlier, type a colon ‘:’ and the letter ‘q’ to quit. Start by ensuring you’re in your
home directory, then create a directory named ‘tmp’ by typing the command mkdir tmp and hit
return. Change to the tmp directory with the command cd tmp. Type the command vi test.txt
to launch Vim and start editing a file named test.txt. Vim will open in the Normal mode as shown
in figure 1-43.

Referring to figure 1-43 — Notice the Vim window appears different in Terminator running
on Linux. This is because there is a different Vim configuration on the Linux machine. I’ll show
you how to customize Vim in short order.

Figure 1-42: Vim Running in Git Bash Terminal on Windows

Chapter 1: Part 1 Preliminaries: Baseline Development Environment Text Editors

Computer Scripting Techniques with Python © 2023 Pulp Free Press 31

0
0
0
0
0
0
0
1

3.1.1.1.1 Normal Mode

Vim launches in the Normal mode. You can perform basic text editing in Normal mode, but
you can’t type text directly. You can use the ‘h’, ‘j’, ‘k’, and ‘l’ keys to move left, up, down, and
right respectively but this only works when you have text in which to move around. In Normal
mode, Vim expects control commands until you enter the letter ‘i’ to change to Insert mode.

3.1.1.1.2 Insert Mode

Type the character ‘i’ to change to Insert mode and enter some text. At this point, you are typ-
ing text into a buffer or temporary memory area where edits are stored until you actually write
them to the file. When you’re done entering text, hit the ESC (escape) key to return to Normal
mode.

3.1.1.1.3 Command Mode

While in Normal mode type the colon ‘:’ key to change to Command mode. To save the file,
enter a colon ‘:’ and ‘w’ characters to write the changes made in the buffer to the file. If you are in
Insert mode, you’d hit the ESC key to change to Normal mode followed by the ‘:’ and ‘w’ charac-
ters in succession.

3.1.1.1.4 Visual Mode

Visual mode is used to select sections of text for deleting or copy and paste operations. Visual
mode has three submodes: Visual, Visual Line, and Visual Block. I’ll demonstrate Visual Line
mode here. In Normal mode place your cursor at the start of the line you want to copy and type
shift + V to enter Visual Line mode. This selects an entire line as shown in figure 1-44.

Referring to figure 1-44 — To copy the selected text type ‘y’ then type ‘p’ to paste the
selected text on a new line. To save the file and exit type ESC to enter Normal mode then ‘:’, ‘w’,
‘q’.

Figure 1-43: Vim in Normal Mode Editing Test.txt File in Terminator Window on Linux

Text Editors Chapter 1: Part 1 Preliminaries: Baseline Development Environment

32 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
0
1

3.1.2 Customize Vim

Yeah, Vim is a total pain in the ass to learn but many hard core developers use Vim as their
Integrated Development Environment (IDE) due to its numerous customization options. The
quickest way to customize Vim is to obtain a ready-made Vim configuration file (.vimrc).

First, navigate to your home directory and open the existing .vimrc file with Vim. If you don’t
have a .vimrc file in your home directory, create it. Next, open a browser and navigate to The Ulti-
mate vimrc repository on GitHub: https://github.com/amix/vimrc

OK, according to the repository’s README.md there are two versions: 1. Basic, and 2. Awe-
some. I’ll show you how to configure The Basic vim configuration and leave The Awesome con-
figuration to you as an exercise since it requires cloning the repository, something that requires
the use of Git, which I won’t discuss until Part II.

Follow the link to the basic.vim file https://github.com/amix/vimrc/blob/master/vimrcs/
basic.vim and at the top of the file click on the Raw button to switch to raw view. Select all and
copy. Next, return to Vim and enter Insert mode. Right-click and paste the configuration settings
into your .vimrc file. Save the file and exit Vim. Relaunch Vim and open the ~/tmp/test.txt file.
You should see a few changes to the Vim interface as shown in figure 1-45.

Referring to figure 1-45 — The most visible changes are apparent in the gray status bar at the
bottom of the Vim window that shows the path to the file you’re editing, your current working
directory (CWD), along with the cursor’s current Line and Column number.

Another feature I like to activate in Vim is to show line numbers. Enter Command mode by
typing a colon ‘:’ and then type set nu and hit return. Your Vim lines will now begin with line
numbers as shown in figure 1-46.

Figure 1-44: Text Selection in Visual Mode

Figure 1-45: Vim After The Basic Configuration Code Added to .vimrc

https://github.com/amix/vimrc
https://github.com/amix/vimrc/blob/master/vimrcs/basic.vim
https://github.com/amix/vimrc

Chapter 1: Part 1 Preliminaries: Baseline Development Environment Text Editors

Computer Scripting Techniques with Python © 2023 Pulp Free Press 33

0
0
0
0
0
0
0
1

Referring to figure 1-46 — If you always want to show line numbers simply edit your .vimrc
file and add the set nu command. Note that The Basic vimrc configuration works on Vim run-
ning in the Git Bash terminal as well as shown in figure 1-47.

3.1.3 Parting Thoughts On Vi/Vim

Vim is a powerful, compact, speedy, ubiquitous, highly-configurable text editor. Knowing
some basic Vim commands might save your hide and make you look like a hero someday when
you’ve logged into a Linux EC2 instance in AWS or a Docker image and need to edit something
in a pinch. If you’re feeling overwhelmed by Vim and feel nauseated at the thought of using key-
board commands to navigate the text, you may prefer to use the next editor on the list.

3.2 Nano

Like Vim, Nano is everywhere. Version numbers vary, but it comes on macOS, Linux, and Git
for Windows. Like Vim there are some text commands involved but it’s a whole lot easier to nav-
igate and edit text. It’s ready to go when you launch it, meaning it’s ready for you to start entering
text. Initially you’re typing into an empty buffer but you can launch Nano with an existing file. To
edit the ~/tmp/test.txt file open a terminal window from your home directory and type nano tmp/
test.txt. Figure 1-48 shows Nano running in a Git Bash terminal.

Referring to figure 1-48 — Nano is easy to use but I must have changed the terminal color
scheme because I find the white text in the patch of neon green impossible to decipher even when
looking at the screen close up in real life. To fix it, click in the upper left-hand corner of the Git
Bash terminal and from the pop-up menu select Options... then select Looks and choose a more
pleasing Theme from the dropdown menu. I selected the mintty theme and things look a whole lot
easier to read as you can see from figure 1-49.

Figure 1-46: Vim with Line Numbers

Figure 1-47: Vim Running in Git Bash Terminal with The Basic vimrc Configuration

Text Editors Chapter 1: Part 1 Preliminaries: Baseline Development Environment

34 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
0
1

Referring to figure 1-49 — I made this color change via terminal settings. You always have
that option regardless of the application running in the terminal. However, Nano is configurable
via a .nanorc file. To learn more about Nano editor configurations visit the GNU Nano website:
https://www.nano-editor.org/dist/v2.9/nanorc.5.html

If you refuse to learn Vim then Nano is also found on modern UNIX and Linux operating sys-
tems. Again, the purpose of Nano is not to write novels and personally I don’t use it much because
for quick edits I prefer Vim, and for longer documents I use the next editor on the list — Sublime
Text.

3.3 Sublime Text

Sublime Text is my favorite text editor. I like it because it’s easy to use and extensible via
plugins. I also like it because it runs on all three operating systems: macOS, Windows, and Linux.
It’s not the only cross-platform text editor out there but it’s a good one.

3.3.1 Install Sublime Text

Installing Sublime Text on Windows and macOS is super easy to do so I won’t waste your
time on those platforms in this section but I will show you how to install it on Linux.

SOAPBOX: Before proceeding, however, I need to say that Sublime Text is not free but it can
be evaluated for an indefinite period of time. (I imagine at some point there may be a time limit
applied to evaluations.) I like to support Sublime Text and any professionally-produced software
I personally like and use that accepts donations or requires a reasonable activation fee. If you con-
sider yourself a professional software developer at some point in your career, it may not be now if

Figure 1-48: Nano Running in Git Bash Terminal

Figure 1-49: Oh, it says, “Read 5 Lines”!

https://www.nano-editor.org/dist/v2.9/nanorc.5.html
https://www.nano-editor.org/dist/v2.9/nanorc.5.html

Chapter 1: Part 1 Preliminaries: Baseline Development Environment Text Editors

Computer Scripting Techniques with Python © 2023 Pulp Free Press 35

0
0
0
0
0
0
0
1

you are just starting out but when you are able, please financially support your favorite software
tools.

OK, navigate on over to the Sublime Text installation documentation for Linux https://
www.sublimetext.com/docs/linux_repositories.html and follow the instructions for your particular
package manager. For Linux Mint, which is a Debian/Ubuntu derivative, the package manager is
apt. I will use those instructions as a guide here. See figure 1-50.

Referring to figure 1-50 — Linux Mint, if you’re using a recent version, will handle the instal-
lation flawlessly. First, launch a terminal...

• Start with Install the GPG Key: Simply copy the text in the gray box and be sure
to copy the entire command, then paste it into your terminal. Enter your root pass-
word when prompted.

• Next, copy the Stable channel command and paste it into your terminal and hit
return.

• Next, copy the sudo apt-get update command, paste it into the terminal and
hit return.

• Finally, copy the sudo apt-get install sublime-text command and paste it
into the terminal and hit return.

Sublime Text is now installed and is available in the Menu as shown in figure 1-51.
Referring to figure 1-51 — Right-click Sublime Text and add it to the panel, desktop, and to

your favorites. Now, launch Sublime Text, open the ~/tmp/test.txt file, and refer to figure 1-52.
Referring to figure 1-52 — You’ll see the text UNREGISTERED in the title bar. That’ll stick

around until you part with some cash. Those sorts of reminders bug me so I pony up! Also in fig-
ure 1-52, to add plugins to Sublime Text click Tools > Command Palette... and search for Install
Package Control as shown in figure 1-53.

Referring to figure 1-53 — Click Install Package Control to install the Package Control
plugin. You’ll see a pop-up window saying Package Control was successfully installed. Click OK
to close the window. To install a package, click Tools > Command Palette... and type Install
Package to show a list of available packages as shown in figure 1-54.

Figure 1-50: Install Instructions for Linux Distributions Using apt Package Manager

https://www.sublimetext.com/docs/linux_repositories.html
https://www.sublimetext.com/docs/linux_repositories.html

Text Editors Chapter 1: Part 1 Preliminaries: Baseline Development Environment

36 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
0
1

Referring to figure 1-54 — Here I’m searching for JSON packages. Before installing a pack-
age you need to read the fine print. Some packages only work with older version of Sublime Text.
Ensure you’re installing a compatible package. The Pretty JSON package is quite helpful and runs
in the current version. Install that package. You’ll use it later in the book.

I recommend you take some time now to browse Sublime Text’s menus. You’ll quickly see
why I like this text editor. It’s super configurable, supports macros, can be extended with plugins,
works with projects, supports syntax highlighting and build systems for multiple languages, and it
runs on multiple operating systems.

Figure 1-51: Sublime Text Installed on Linux Mint

Figure 1-52: Sublime Text Tools Menu - Command Palette... Highlighted

Chapter 1: Part 1 Preliminaries: Baseline Development Environment Text Editors

Computer Scripting Techniques with Python © 2023 Pulp Free Press 37

0
0
0
0
0
0
0
1

3.3.2 Unfarkle Sublime Text Settings

If a package you’ve installed doesn’t show up on the list of available packages you may need
to check to see if it has been added to the "ignored_packages" section of the user’s Prefer-
ences.sublime-settings file. No need to hunt this file down. To open it from the Sublime Text
menu select Preferences > Settings. Sublime will launch another editor window in two-column
mode with global settings shown in the left-hand column and your user settings shown in the
right-hand column as shown in figure 1-55.

Figure 1-53: Tools > Command Palette... then Install Package Control

Figure 1-54: Sublime Text - Searching for a Package to Install

Figure 1-55: Editing User Preferences File in Sublime Text

Text Editors Chapter 1: Part 1 Preliminaries: Baseline Development Environment

38 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
0
1

Referring to figure 1-55 — Settings are stored in JSON format. You can see the full path to
your user settings file in the title bar. Note the "ignored_packages" section shown in the right-
hand column. It currently shows one entry: "Vintage". Like I said, if you install a package and
later can’t seem to launch it or find it in the list of available packages, check to ensure it wasn’t
somehow added to the "ignored_packages" section.

3.3.3 Launch Sublime Text From The Command Line

Close all open Sublime Text windows. OK, to launch Sublime Text from the command line
open a terminal and type subl — this will open Sublime Text with an untitled document ready to
edit. To open an existing file provide the path and filename as an argument like so: subl tmp/
test.txt This will launch Sublime Text with the ~/tmp/test.txt file ready for editing.

NOTE: You’ll need to configure your PATH environment variable on macOS before launching
Sublime Text from the command line. I’ll show you how to do this later in the chapter.

3.4 Parting Thoughts On Text Editors

There are many other fine text editors available and which one you ultimately use depends on
your tastes and preferences but keep in mind a text editor is different from a word processor like
Microsoft Word. Text editors deal with plain text. Word processors add special characters to text
to indicate formatting.

A Microsoft Word file (.docx) is actually an archived XML file. For the curious, take any
Word (.docx) file, change the file suffix to (.zip) and unzip it. You’ll see several files and directo-
ries. In the word directory open the document.xml file with Sublime Text. Next, install the Indent
XML package, then select all the text and apply the Indent XML command. I did this with one of
my Word (.docx) files and the results are shown in figure 1-56.

Referring to figure 1-56 — That’s the power of a proper text editor. Now, for real power, open
the Word (.docx) file with Vim as shown in figure 1-57.

Figure 1-56: Editing document.xml from a Decompressed Word .(.docx) Archive with Sublime Text

Chapter 1: Part 1 Preliminaries: Baseline Development Environment Visual Studio Code

Computer Scripting Techniques with Python © 2023 Pulp Free Press 39

0
0
0
0
0
0
0
1

Referring to figure 1-57 — Vim unzips the file with zip.vim and prompts you to select a file
from the archive to open. You may need to install The Amazing vimrc package discussed in the
Vim section to get this functionality.

Quick Review

A software developer needs a good text editor. The editors discussed in this section, Vi/Vim,
Nano, and Sublime Text work cross platform The first two work in a terminal and do not require a
GUI nor a mouse. They are ideal text editors for times when you must remote in to a UNIX-like
virtual machine running in the cloud or in a Docker container.

Vim stands for Vi IMproved and ships along with Nano on macOS, Linux, and Git for Win-
dows. Vim has a steep learning curve but is extremely powerful and highly configurable but it’s
not everyone’s cup of tea. If the thought of using key-commands to navigate text makes you want
to vomit then Nano is a good alternative to Vim.

Sublime Text is an ideal workstation text editor in that it runs in a GUI and works with a
mouse as you’d expect. It, too, runs on all three platforms, is highly configurable, and can be
extended via plugins. You can launch Sublime Text from the command line by typing the com-
mand subl at the prompt followed optionally by a filename.

Don’t make the common novice mistake of editing text files with a word processor application
as you may end up adding hidden codes to the file which will dork everything up.

4 Visual Studio Code

As powerful as text editors have become you’ll still want a full-blown Integrated Develop-
ment Environment (IDE) for software development. An IDE, as the word integrated suggests,
offers source code editing, project management, debugging, and other features in one convenient
package.

Figure 1-57: Editing Word (.docx) File with Vim in iTerm2 on macOS — It Unzips it For You!

Visual Studio Code Chapter 1: Part 1 Preliminaries: Baseline Development Environment

40 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
0
1

Some hardcore developers use Vim as their IDE but doing so requires a lot of configuration
not to mention a steep learning curve. It probably gives them solid street creds to say that’s the
way they roll but if you’re new to the profession then you’re gonna want something easier to use
with a ton of features and can be customized into exactly what you need with a small handful of
extensions. You’re going to love Visual Studio Code.

I’ve chosen Visual Studio Code because it runs on all three platforms: macOS, Linux, and
Microsoft Windows and is easy to master.

4.1 Install Visual Studio Code

Installing Visual Studio Code on macOS and Windows is straightforward so I’ll only review
the Linux installation steps. Navigate to the Visual Studio Code website https://code.visualstu-
dio.com and download the package that corresponds to your version of Linux. For Linux Mint
download the .deb Stable package. When the download completes, open a terminal, change to
your ~/Downloads directory, and run the command sudo dpkg -i package_name.deb where
package_name is the name of the package you want to install. Hit return. Enter your password
when prompted and hit return to begin the installation.

When installation completes, open Menu and search for Visual Studio Code. Add it to the
panel, the desktop, and to your favorites if so desired. You can delete the package file and clear
your ~/Downloads folder.

When you’re ready, launch Visual Studio Code. It’ll ask you to make some initial configura-
tion decisions like choosing a color theme (I like the Dark theme...). Choose a color theme and
click Next Section until you see Mark Done. Click Mark Done. Your Visual Studio Code win-
dow will open to the Get Started window as shown in figure 1-58.

Referring to figure 1-58 — Along the left-hand side of the VS Code window you’ll find a
series of icons. From the top you have Explorer, Search, Source Control, Run and Debug, and
Extensions. Moving down towards the bottom you have Accounts, and Manage.

As you progress through this book you’ll learn more about VS Code. The first thing you’ll
need to add are several extensions that make it easier to work with Python. Let’s do that now.

4.2 Add Extensions For Python Development

Click the Extensions icon — it’s 5th from the top and looks like a Tetris game — to open the
EXTENSIONS panel. You’ll see a search bar at the top along with a funnel icon (filter) and a cir-
cular arrow (refresh) as shown in figure 1-59.

Referring to figure 1-59 — A word on selecting extensions. I personally gravitate towards the
ones with a blue certification badge from Microsoft. You see one at the top of the list named
Python. The Python extension will add Python IntelliSense which is super helpful. To install the
extension just click on the blue Install button. Go ahead and install the Python extension. Note
that installing one extension may install others. Such is the case with the Python extension, which
also installs the Pylance and Jupyter notebook extensions. OK, that’s all you need for now. VS
Code has a ton of built-in features. If you need another extension I’ll let you know when the time
comes. Take time now to browse the extensions to see what’s available.

https://code.visualstudio.com
https://code.visualstudio.com

Chapter 1: Part 1 Preliminaries: Baseline Development Environment Visual Studio Code

Computer Scripting Techniques with Python © 2023 Pulp Free Press 41

0
0
0
0
0
0
0
1

4.3 Launch Visual Studio Code From The Command-Line

Like Sublime Text, Visual Studio Code can be launched from the command-line. Simply type
the command code followed optionally by the file or folder you want to open.

For example, to open the ~/tmp folder as a project open a terminal, navigate to your home
directory if not already there, and type code tmp. If you created the ~/tmp folder earlier along
with the test.txt file you’ll see both in the Explorer panel. VS Code may ask you if you want to
trust the authors of the code found in the folder. Answer in the affirmative and proceed.

Launching VS Code from the command line only works automatically after installing on
Linux with the dpkg command. You’ll need to add the location of the code executable to your
PATH environment variable for this to work in the macOS and Git Bash terminals. I’ll show you
how to configure environment variables later in this chapter.

Quick Review

Visual Studio Code is a powerful Integrated Development Environment (IDE) that runs on
Microsoft Windows, macOS, and Linux. It comes out of the box with a ton of helpful features and
anything not already built in can be added via extensions.

Visual Studio Code can be launched from the command-line by typing the command code fol-
lowed optionally by the name of a folder or file. This works automatically when installing on

Figure 1-58: Visual Studio Code Running on Linux Mint

Package Managers Chapter 1: Part 1 Preliminaries: Baseline Development Environment

42 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
0
1

Linux Mint with the dpkg command. You’ll need to configure the PATH environment variable on
Windows and macOS to launch VS Code from the command line.

5 Package Managers

A package manager is an application used to manage software on a computer system as shown
in figure 1-60.

Referring to figure 1-60 — A package manager maintains a list of available software pack-
ages along with any dependencies required for installation. When you install a package, the pack-
age manager compares the software installed on your computer with package metadata and
installs or updates related packages required to support the new software. The package manager
you’ll use depends on your operating system.

Windows and macOS users are rather spoiled in that you generally don’t use a package man-
ager to install software. Instead, you usually visit a website that provides a download link to the
software you want to install and then install the software manually with some sort of installer.
Windows users are generally provided either an installer executable (.exe) or (.msi) file.

For macOS users, most software can be installed via the Apple App Store or directly from
websites via (.dmg) images, which are automatically unpacked and mounted on the desktop upon

Figure 1-59: VS Code Extensions Panel

Chapter 1: Part 1 Preliminaries: Baseline Development Environment Package Managers

Computer Scripting Techniques with Python © 2023 Pulp Free Press 43

0
0
0
0
0
0
0
1

download. The new application must then be dragged to the Applications folder. Often times an
installer will guide you through the installation process. Sometimes you get a choice of where to
install the software and sometimes you don’t.

Linux users have different ways of installing software on their machines. There are different
package managers for different distributions. For example, apt is the package manager for Debian
and derivatives (.deb packages) whereas CentOS and RedHat use rpm or yum (.rpm packages).
These are command-line tools but Linux also ships with GUI-based installers.

Windows 10/11 users have access to a package manager called winget, while macOS users
can install software via a third-party package manager called Homebrew. These package manag-
ers are especially useful for software developers who work daily with command-line tools.

5.1 Windows

If you’re a windows user, you will most likely install software directly on your machine by
visiting the software maker’s website, say Sublime Text’s website for example, find and down-
load the installer for your version of Windows (32-bit, 64-bit, x86, arm64, etc.), and install the
software. You also have access to a command-line package manager named winget.

5.1.1 winget

To use winget launch a PowerShell terminal and type winget at the prompt to display usage
and a list of commands as shown in figure 1-61.

Referring to figure 1-61 — Type winget list to view installed packages. When asked, Do
you agree to all the source agreements terms? enter Y and hit return. You’ll see a slew of installed
packages scroll up the terminal. Browse the list. It’s interesting to see what’s already installed.

Figure 1-60: Package Manager Architecture

Package Managers Chapter 1: Part 1 Preliminaries: Baseline Development Environment

44 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
0
1

Now, search for Python packages by typing winget search python. Scroll up to the top of
the list. You should see Python 3.10 along with Python 3.11 as shown in figure 1-62.

Referring to figure 1-62 — There sure are a lot of interesting Python packages. To get more
information about the Python 3.11 package type winget show --name Python 3.11 to list
detailed package information. I’ll show you how to install and configure Python later in this chap-
ter but if you want to install it now with winget please proceed. You’ll need to use the following
command:

winget install --name "Python 3.11" ‘
--version "Python.Python.3.11" ‘
--source "winget"

Figure 1-61: winget Package Manager in Windows PowerShell

Figure 1-62: Searching for Python Packages with winget

Chapter 1: Part 1 Preliminaries: Baseline Development Environment Package Managers

Computer Scripting Techniques with Python © 2023 Pulp Free Press 45

0
0
0
0
0
0
0
1

You can enter this command all on one line but if you do you’ll need to omit the trailing back-
tick characters from the first two lines. The trailing backtick character is used in PowerShell to
break long commands across multiple lines. If all goes well (The battle cry of the software engi-
neer!) you’ll see a Downloading message. When the download completes, the Python 3.11.0
(64bit) Setup dialog window will launch. Follow the installation prompts. Meet you in the next
section.

5.2 macOS

MacOS users are even more spoiled than their Microsoft Windows colleagues. One generally
installs software from Apple’s App Store. The App Store usually has the latest and greatest ver-
sions of whatever software you’re looking for but not all software you need is located on the App
Store and often times you will download and install an application directly from its website.

For many software developer tools it’s best to install them using a package manager but
macOS does not ship with a package manager, however, there is a excellent third-party package
manager available for macOS called Homebrew.

5.2.1 Homebrew (A. K. A. brew)

Homebrew, or simply brew, is, according to its website, “The missing package manager for
macOS (or Linux)”. To install Homebrew, navigate on over to their website https://brew.sh and
copy the install script off the homepage. (Click the clipboard icon to the right of the install script’s
text box.)

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/
HEAD/install.sh)"

Paste the installation script into a terminal and hit return. When prompted enter your pass-
word. Installation may take a few minutes as the Homebrew repository is cloned to your local
machine. When installation completes, you’ll see three commands listed under a section called
Next Steps. Copy and paste, and execute each of those commands, one at a time, in your terminal
to add the brew command to your system path. Close the terminal window and launch a new ter-
minal. When you’ve finished, test it out by installing a helpful command: tree. To install the
tree command using brew type the following at the prompt: brew install tree

When installation completes, navigate to your home directory if not already there and type the
command tree. You should see a tree view of your home directory scroll up the terminal. The
iTerm2 terminal may ask permission to access some of your home directory’s folders. Click Yes
or No depending on your level of comfort. I generally click Yes to everything.

The raw tree view is useless in my opinion for large directory listings and best limited by the -
L (level) argument. Retry the command like so: tree -L 2 or target a specific folder as in: tree
Documents or tree Downloads.

The tree command comes in super handy when you want to see a graphical layout of your
software development project’s directory structure. Later in this chapter you’ll use brew to install
Python.

https://brew.sh

Install, Configure, and Run Python Chapter 1: Part 1 Preliminaries: Baseline Development Environment

46 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
0
1

5.3 Linux Mint (Debian/Ubuntu)

As you’ve already learned in this section, if you’re a Linux user, the package manager you’ll
be using is dictated by the distribution of Linux. In this book I’ve chosen to focus on Linux Mint,
which is a derivative of Debian and Ubuntu. The package manager is apt.

5.3.1 APT

To get help on apt simply type apt at a terminal prompt. To search for a package type apt
search package_name, where package_name can be a full or partial package name. Type apt
search python and see how many packages related to Python scroll by.

To install Python 3.11 type apt install python3.11:any. When prompted enter your pass-
word. When installation completes, close and relaunch your terminal and type python3 to launch
the Python interpreter or Read Eval Print Loop (REPL). I’ll talk more about the Python REPL
later in the book.

Quick Review

Use a package manager when possible to install and manage software development tools and
related applications. Microsoft Windows 10 and 11 ship with winget, Linux Mint uses apt, and
macOS can use Homebrew (brew).

6 Install, Configure, and Run Python

In this section you’ll install and configure Python so you can run it from the command line.

6.1 Windows

You can install Python several ways on Windows 10 & 11. You can either use the winget
package manager discussed in the previous section or visit the Python website, https://python.org
download the installer and install it manually.

If you installed Python using winget you should be able to run it in a PowerShell terminal.
Try that now. Launch a PowerShell terminal and type python at the command prompt. That
should launch the python interpreter or REPL as shown in figure 1-63.

Referring to figure 1-63 — That means the environment variables have been set properly so
the operating system can find the Python 3.11 executable. Type exit() to exit the REPL. Next,
launch the Git Bash terminal and type python. It may appear as though something is happening
but the terminal hangs as is shown in figure 1-64.

Figure 1-63: Python REPL Running in PowerShell

https://python.org
https://python.org

Chapter 1: Part 1 Preliminaries: Baseline Development Environment Install, Configure, and Run Python

Computer Scripting Techniques with Python © 2023 Pulp Free Press 47

0
0
0
0
0
0
0
1

Referring to figure 1-64 — If you encounter this issue, close the terminal and click OK on the
warning dialog pop-up. Launch the Git Bash terminal again but this time type winpty python as
shown in figure 1-65.

Referring to figure 1-65 — The winpty command comes with Git for Windows. It enables
software written to interact with a Microsoft Windows console to work in the Git Bash (mintty)
terminal. You can learn more about the details of the winpty command here: https://github.com/
rprichard/winpty All you really need to know is that if you run software in the Git Bash terminal
and expect to see output but see none, try running the command with winpty. I will show you
later how you can create a command alias in your bash profile that automatically runs such com-
mands with winpty.

6.2 macOS

You can install Python either by visiting the official Python website, https://python.org, down-
loading the installer and installing manually, or via brew. I prefer installing Python using brew.
First, use brew to search for Python 3 packages with the following command:

brew search python3

This will return a list similar to the one shown in figure 1-66.

Figure 1-64: Python Not Working Properly in Git Bash Terminal

Figure 1-65: Python Running Property by Typing winpty python

Figure 1-66: Searching for python3 Packages with brew

https://github.com/rprichard/winpty
https://github.com/rprichard/winpty
https://github.com/rprichard/winpty
https://python.org

Install, Configure, and Run Python Chapter 1: Part 1 Preliminaries: Baseline Development Environment

48 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
0
1

Referring to figure 1-66 — Note the name of the package you want to install. To install
Python 3.11 use the following command:
brew install python@3.11

When installation completes run Python 3.11 with the following command: python3.11 You
should see the Python 3.11 REPL run as shown in figure 1-67.

Referring to figure 1-67 — If you followed the instructions exactly then everything may seem
fine and dandy but if you typed the command python or python3 you will see very different ver-
sions.

6.2.1 Python vs. Python3

macOS ships with a version of both Python 2 and Python 3. If you simply type the command
python it runs Python 2.7.16. If you type python3 it runs whatever version of Python 3 shipped
with the operating system. For macOS Catalina up to Monterey if was most likely Python 3.8. To
install the latest stable version of python3 with brew use the following command:
brew install python3

Now when you run python3 you’ll actually be running Python 3.10.8, which at the time I
write this is the latest stable version installed by brew. This may change in the very near future.
You shouldn’t need anything greater than Python 3.10 for this book anyway. If you need Python
3.11, you can always run it with the python3.11 command.

6.3 Linux

To install Python 3.11 on Linux Mint using the apt package manager use the following com-
mand:
apt install python3.11:any

When prompted enter your password. When installation completes close and relaunch your
terminal window. Type python3 to launch the Python REPL as shown in figure 1-68.

Figure 1-67: Python 3.11 Running on macOS

Figure 1-68: Python 3.11 REPL Running in Terminator on Linux Mint

https://www.youtube.com/watch?v=bvQnSin1rcM
https://www.youtube.com/watch?v=bvQnSin1rcM

Chapter 1: Part 1 Preliminaries: Baseline Development Environment Configure Environment Variables And Shell Profiles

Computer Scripting Techniques with Python © 2023 Pulp Free Press 49

0
0
0
0
0
0
0
1

Referring to figure 1-68 — If you’re able to run the Python 3.11 REPL then you’re all set. To
exit the REPL type exit().

Quick Review

Unless you have a compelling reason otherwise you should always install the latest stable ver-
sion of Python on your system. Windows, macOS, and Linux users have options regarding how to
install Python. You can either download the installer directly from the Python.org website or use a
package manager. You should be able to run the latest version of Python 3.x with the command
python3.

Newer versions of macOS ship with Python 2 and 3 already installed. To execute Python 2.x
use the python command. You won’t need Python 2 for this book but you do need to be aware it’s
installed. To run Python 3.x use the python3 command. To install the latest stable version of
Python 3.x on macOS use the command brew install python3. If you install Python 3.11 with
brew you can run it by using the python3.11 command. To run Python 3.11 on Linux Mint use
the command python3. All examples in this book will run on Python 10.8 and above.

7 Configure Environment Variables And Shell Profiles

There’s one last critical topic to discuss regarding development environment configuration
before calling this chapter complete and that’s how to configure environment variables and shell
profiles.

Regardless of what operating system you’ll be using, you’ll be running most of the examples,
especially those involving bash scripts, in a bash shell. This includes Microsoft Windows users
who will be using the Git Bash (mintty) terminal.

To further customize your terminal experience you’ll be adding commands to a file in your
home directory called .bash_profile. Linux and macOS users can export shell environment vari-
ables via their .bashrc or .bash_profile files, but Windows users will still need to set environment
variables the Windows way.

7.1 What Is An Environment Variable?

An environment variable is a named memory location used by the operating system to store a
configuration string or value. One ubiquitous environment variable found on all operating sys-
tems is the PATH variable, which tells the OS where to search for executable files. There are gen-
erally two sets of environment variables: System environment variables and User environment
variables. System environment variables apply to the operating system as a whole and to every
user who logs into the system. User environment variables apply only to a particular user when
they are logged in.

If you open a terminal, type a command, and get a Command not found error, then the operat-
ing system is saying either the application or tool is not installed or it does not know where to find
it, or in other words, the path to its executable is not listed in the PATH environment variable.

Configure Environment Variables And Shell Profiles Chapter 1: Part 1 Preliminaries: Baseline Development Environment

50 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
0
1

7.2 Windows

Some shell settings can be configured in a .bash_profile but environment variables should be
set using the Environment Variables dialog. The easiest way to open the environment variables
dialog is to search for it in the taskbar search box as shown in figure 1-69.

Referring to figure 1-69 — From the search results click “Edit the system environment vari-
ables” to open the System Settings dialog. Click the Environment Variables button to open the
Environment Variables dialog. (Why Microsoft Windows doesn’t directly open that dialog is
beyond me.) Click the New... button to add a new variable or select an existing variable and click
the Edit... button. Take the time now to explore what User variables have been set. You may see
more or less variables listed depending on how many applications are installed on your machine.
As a rule you generally do not dork around with the System variables. Add or edit the User
variables only. For more details on setting Windows environment variables watch this video:
https://www.youtube.com/watch?v=ZpNj5z0tqx4

Figure 1-69: Setting/Editing Environment Variables in Microsoft Windows

https://www.youtube.com/watch?v=ZpNj5z0tqx4

Chapter 1: Part 1 Preliminaries: Baseline Development Environment Configure Environment Variables And Shell Profiles

Computer Scripting Techniques with Python © 2023 Pulp Free Press 51

0
0
0
0
0
0
0
1

7.2.1 Create Command Aliases In .bash_profile

Open a Command-Prompt terminal and type the command tree. You see that it works. The
tree command ships with Microsoft Windows. Now, open a Git Bash terminal and run the tree
command again. You’ll see a message that says: “bash: tree: command not found” Here’s how to
fix it. While still in the Git Bash terminal type the following command:
cmd //c tree //a

This command is running the Windows command interpreter (cmd.exe) with the /c switch,
which means run the specified command and then immediately exit. The first ‘/’ of the “//c”
sequence is an escape character. Next comes the command to execute, which is tree, followed by
the escaped /a switch “//a”, which tells the tree command to use ASCII characters in the out-
put. You should see results similar to that shown in figure 1-70.

Referring to figure 1-70 — Try running the tree command without the //a switch if you’re
curious. Of course, running the tree command like this in Git Bash is a pain, so let me show you
how to create a command alias in your .bash_profile.

Type the command ls -al to see if you already have a .bash_profile file in your home direc-
tory. If not, create it with Vim like so:
vi .bash_profile

Switch to Insert mode and type in the following lines:
alias tree='cmd //c tree //a'
alias dir='ls -al'
alias cls='clear'

When you’ve finished, hit esc to switch back to Normal mode then “:wq” to save the file and
exit Vim. Close and reopen the Git Bash window for the .bash_profile settings to take effect. I fig-

Figure 1-70: Running tree Command in Git Bash Terminal

Configure Environment Variables And Shell Profiles Chapter 1: Part 1 Preliminaries: Baseline Development Environment

52 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
0
1

ured while you were at it you may as well add aliases for common Windows Command-Prompt
commands. When you’re ready test the tree command. This time just type tree. If it doesn’t
work you screwed something up and you’ll need to edit your .bash_profile file and fix the mis-
take.

To clear the terminal window you can now type the MS-DOS command cls or the UNIX
command clear, the preference is yours. Same for getting a detailed listing of a directory. You
can type either dir or ls -al. I was an MS-DOS command user way before I learned UNIX and
aliasing familiar commands makes transitioning to the UNIX/Linux terminal a smoother experi-
ence. Another popular alias for ls -al is simply ll. You can add that alias to your .bash_profile
if you so desire.

Now, one more important alias to add. Once again edit your .bash_profile and add the follow-
ing line:
alias python='winpty python'

Save the file, close the terminal and relaunch. Type the command: python You should see the
REPL work just fine now. To exit the REPL type exit().

7.2.2 Customize Bash Prompt

Git for Windows installs everything you need to start using Git. The Git Bash terminal’s shell
prompt is already configured to display the active Git branch as shown in figure 1-71.

Referring to figure 1-71 — About the only critique I can make regarding the prompt configu-
ration is that the first line’s length grows too long for my taste when the path of the current work-
ing directory is long. To fix this I like to move the usersname@host section to the second line of
the prompt.

To do this you’ll need to edit the /etc/profile.d/git-prompt.sh file, and if you want to edit the
file with Vim then you’ll need to launch the Git Bash terminal as Administrator. To do this right-
click the Git Bash desktop icon and select Run as administrator. Click Yes on the pop-up. You
will now be able to edit the file via the terminal using either Vim or Nano. First, however, make a
copy of the git-prompt.sh file just in case you dork something up. This is good advice anytime
you’re tweaking important configuration settings. I recommend naming the copy git-
prompt.sh.original.

Another way to edit the file is to use Visual Studio Code or Sublime Text. The absolute path to
the git-prompt.sh file is: C:\Program Files\Git\etc\profile.d\git-prompt.sh Note this path is in
Windows format by the use of backslash characters in the path.

If you edit the file with Visual Studio Code you will also need to right-click the VS Code
desktop icon and select Run as administrator.

To move the username@host section of the prompt to the second line, copy lines 14 and 15 of
the original file and copy the code (or cut the code if you’re ballsy) then add a new line below line
35 and paste the code. If you haven’t already done so delete the original lines 14 and 15. Next, cut

Figure 1-71: Git Bash Shell Prompt Already Shows Git Branch

Chapter 1: Part 1 Preliminaries: Baseline Development Environment Configure Environment Variables And Shell Profiles

Computer Scripting Techniques with Python © 2023 Pulp Free Press 53

0
0
0
0
0
0
0
1

line 32, add a new line below line 35 and paste. Save the file and open a new Git Bash terminal to
test your changes. The new prompt configuration will look similar to figure 1-72.

Referring to figure 1-72 — I’ve also increased the terminal font size from 12 to 16 points to
make it easier to read here. I personally like this configuration but you may have another opinion.
Feel free to tweak the git-prompt.sh file as you see fit. Just to be safe I recommend making
another copy of the git-prompt.sh file and name it git-prompt.sh.current in case it gets clobbered
by a Git for Windows update.

7.3 Linux

Linux uses one of two files to configure your shell depending on how you launch the terminal.
These include .bashrc and .bash_profile.

When you launch a terminal emulator from the panel or desktop it will read shell configura-
tion settings from the .bashrc file. This is referred to as a interactive non-login shell. On the other
hand, if you log in to a Linux terminal locally or remotely the .bash_profile is used instead. This
is referred to as an interactive login shell.

Perhaps the best way to remember which file is being used to configure the shell on Linux is
that if you are already logged in to the machine and are using a GUI and you launch a terminal
application by clicking an icon then the terminal will launch a non-login shell, which reads from
.bashrc. If you’re logging into a Linux machine remotely, like an AWS EC2 instance, then that
session is running a login shell, which reads from .bash_profile.

7.3.1 Create Aliases In .bash_aliases

On Linux Mint a .bashrc file already exists in your home directory. I recommend you open the
file and study what it’s doing. You’ll see a section of code that checks for the existence of a ~/
.bash_aliases file, which you must create if you want to add custom aliases. Also in the .bashrc
file you’ll find a handful of predefined aliases, some active, others commented out. You can
uncomment the ones you might like to use or add them to your .bash_aliases. If you plan to login
to your Linux machine remotely then you’ll need to create a ~/.bash_profile.

7.3.2 Customize Prompt

You’ll find the default shell prompt definition in the .bashrc file as well. The default prompt
configuration is adequate and straightforward but considered by most experienced terminal users
to be boring and insufficient. Shell prompt customization is a highly personal endeavor. I tend to
favor multi-line prompts with a separate line for the date/time, another for the current working
directory path, and some type of Git integration that shows me what branch I’m working on.

Figure 1-72: Modified Git Bash Shell Prompt

Configure Environment Variables And Shell Profiles Chapter 1: Part 1 Preliminaries: Baseline Development Environment

54 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
0
1

Like Vim configurations, you can find ready-made shell prompts online. Here’s a link to a
handy list of bash prompt repositories on GitHub: https://github.com/topics/bash-prompt Try out
the $_ Bash Prompt Generator: https://scriptim.github.io/bash-prompt-generator/ Figure 1-73
shows a typical $ _ Bash Prompt Generator design session.

Referring to figure 1-73 — Designing bash prompts has never been more fun! Just select and
drag one or more Prompt elements to the Your Prompt section. You can reorder elements to get
things just right. It’s also a helpful learning tool, especially for someone who’s never configured a
bash prompt. Copy and paste the prompt configuration from the Output section. You can see what
the prompt will look like in the Example Preview box. The only critique I have with this excellent
tool is that it doesn’t let you add color codes. In the following section, I’ll show you how to dis-
play the current Git branch in the prompt and give you the prompt code configured in color.

7.3.3 Display Git Branch In The Shell Prompt

Linux Mint comes with everything you need to use Git out of the box but you’ll need to con-
figure the bash prompt to display the current Git branch. To do this you’ll need to modify the
prompt definition located in the .bashrc file. Open the .bashrc file with your editor of choice, nav-
igate to line 60, comment out that line by adding a hashtag ‘#’ to the beginning, create a new line
and paste the following prompt configuration:
PS1='\n\[\033[35m\]$(/usr/bin/date)\n\[\033[32m\]\w \[\033[1;33m\]
\W$(__git_ps1 " (%s)") \n\[\033[1;32m\][\!:\#]\[\033[1;33m\] \u@\h $
\[\e[0m\]'

Note this is all one line of code. Breaking it down — PS1 is the prompt variable. It is initial-
ized here with a string containing a mix of terminal codes, prompt variables, and command
expansions. It starts with a newline character ‘\n’ to separate the prompt from the results of the

Figure 1-73: $ _ Bash Prompt Generator Design Session

https://github.com/topics/bash-prompt
https://github.com/topics/bash-prompt
https://scriptim.github.io/bash-prompt-generator/

Chapter 1: Part 1 Preliminaries: Baseline Development Environment Configure Environment Variables And Shell Profiles

Computer Scripting Techniques with Python © 2023 Pulp Free Press 55

0
0
0
0
0
0
0
1

previous command. Next is the color code for the color purple followed by an expansion of the
current date followed by another new line character. The ‘\w’ prompt variable prints the current
working directory path ($PWD) followed by a color change to yellow. The ‘\W’ variable prints the
basename of ($PWD) or simply the current directory name followed by the expansion
$(__git_ps1 "(%s)" which inserts the current Git branch. This is followed again by a new line
character and the color code for bright green and the sequence [\!:\#] which denotes the shell
command history number and the current command number. This is followed by another change
to the color yellow followed by the username@hostname ‘\u@\h’ and finally the prompt symbol
‘$’ followed by a space and the final escape sequence ‘\[\e[0m\]’, which removes all format-
ting and attributes before the cursor is displayed. Figure 1-74 shows what this prompt looks like
on Linux Mint running in a Terminator terminal window.

Referring to figure 1-74 — The purple date text is hard to read, I know. I look at this now and
think it might be a good idea to remove username@hostname from the prompt because it’s dis-
played in the Terminator title bar. That would make it just about perfect IMHO but I’ll leave that
to your discretion.

7.3.4 Export Environment Variables

Linux Mint installs software into the /usr/bin directory, which is already part of the PATH
environment variable. To see the value of the PATH variable type echo $PATH. If you need to add
a path to your PATH environment variable you’ll need to add a line to the .bashrc file. Let’s say
you want to add the ~/tmp directory to your PATH. You’d need to add the following line to your
.bashrc file:
export PATH="$HOME/tmp:$PATH"

This will add the path to the tmp directory located in your home directory to the existing
PATH shell variable. Essentially, PATH is a variable name. To access the value a bash shell vari-
able contains prefix a dollar sign ‘$’ to the variable name like so: $PATH

HOME is another existing shell variable. It contains the absolute path to your home directory. To
see this value type echo $HOME. The $HOME will expand to /home/username, where username is
your home directory name. To this path the string “/tmp” is appended to give the absolute path to
the tmp directory. To separate path strings use a colon character ‘:’. Finally, add the original path
$PATH or commands will mysteriously stop working.

7.4 macOS

Terminals behave differently in macOS in that by default launching a terminal launches a
login shell. This means you can place most of your shell configuration settings in your .bash_pro-
file. This is the default behavior and unless you have a compelling reason to change it, I recom-

Figure 1-74: Linux Mint Shell Prompt with Git Branch

Configure Environment Variables And Shell Profiles Chapter 1: Part 1 Preliminaries: Baseline Development Environment

56 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
0
1

mend leaving it as is. If the .bash_profile file does not exist then shell configuration settings will
be read from the .profile file.

7.4.1 Create Aliases In .bash_profile

Being a long-time Microsoft Windows user before embracing macOS for software develop-
ment, I like to alias the MS-DOS commands dir and cls. Open or create the .bash_profile file in
your home directory and add the following aliases:

alias dir='ls -al'
alias ll='ls -al'
alias cls='clear'

Save the file and relaunch the terminal to test. While you’re at it, if you installed iTerm2 Shell
Integration before creating the .bash_profile file, cat the .profile file and copy the line that begins
with the word test and paste it into your .bash_profile. Your .bash_profile will look like figure 1-
75.

Referring to figure 1-75 — OK, save the file, close any open terminal windows and relaunch.
Type the command it2attention fireworks to make sure everything works as it should.

7.4.2 Customize Prompt

To customize the shell prompt you’ll need to load the git-prompt.sh file into your .bash_pro-
file, which is installed with the Xcode developer command-line tools. If you haven’t installed
Xcode or the developer command-line tools please do so now before proceeding. When you’re
ready, edit your .bash_profile and add the following line:

source /Library/Developer/CommandLineTools/usr/share/git-core/git-prompt.sh

This will load and execute the git-prompt.sh file. Now, copy and paste the following prompt
configuration into your .bash_profile below the line you just copied:

PS1="\n\[\033[35m\]\$(/bin/date)\n\[\033[32m\]\w \[\033[1;33m\]\$(__git_ps1
'(%s)')\n\[$(iterm2_prompt_mark)\]\[\033[1;32m\][\!:\#]\[\033[1;33m\] \u@\h $
"

Note this is one line of code. This will give you a shell prompt that looks like figure 1-76.
Referring to figure 1-76 — The color purple is hard to decipher but I personally like the sub-

dued date and time readout at the top of the prompt.

Figure 1-75: macOS .bash_profile Settings - So Far...

Chapter 1: Part 1 Preliminaries: Baseline Development Environment Configure Environment Variables And Shell Profiles

Computer Scripting Techniques with Python © 2023 Pulp Free Press 57

0
0
0
0
0
0
0
1

7.4.3 Export Environment Variables

Exporting shell environment variables in macOS works the same as on Linux except you’ll
place the environment variable definitions and export statements in your .bash_profile. You’ll
need to modify your PATH variable to tell the OS where to find the executables for Sublime Text
and Visual Studio Code. Where these applications reside depends on where you dragged their
application files to. Earlier, I recommended you create an Applications folder in your home direc-
tory. That’s where I install applications if I’m given the choice. Figure 1-77 shows the applica-
tions residing in my ~/Applications folder.

Referring to figure 1-77 — If you installed Sublime Text and Visual Studio code to your ~/
Applications folder, fine. If not, they are located in your /Applications folder. Either way, to
launch them from the command-line, edit your .bash_profile and add the following lines:
export PATH="~/Applications/Sublime Text.app/Contents/SharedSupport/
bin:$PATH"
export PATH="~/Applications/Visual Studio Code.app/Contents/Resources/app/
bin:$PATH"

The paths used above assume the applications reside in the ~/Applications directory. The set-
tings in your .bash_profile will look similar to figure 1-78.

Referring to figure 1-78 — The actual settings in your .bash_profile may differ depending on
whether or not this was the first time you created the file, how many software packages you have
installed, existing aliases, and shell-prompt configuration.

Figure 1-76: macOS Shell Prompt showing Git Branch

Figure 1-77: My ~/Applications Folder Containing iTerm, Sublime Text, and Visual Studio Code

Configure Environment Variables And Shell Profiles Chapter 1: Part 1 Preliminaries: Baseline Development Environment

58 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
0
1

Quick Review

Regardless of which operating system you ultimately use there are a handful of issues you
need to understand regarding bash shell configuration settings:

• What type of shell does your terminal application launch? login vs. non-login
• To which shell configuration file should you add your custom settings
• How to set environment variables
• How to customize the PATH environment variable
• How to create aliases
• How to customize your shell prompt (ps1)
• How to display the active Git branch in the shell prompt

Git for Windows is not a full-fledged Linux system but it does come fully configured to dis-
play the active Git branch at the command prompt. You should set Windows environment vari-
ables via the System Settings > Environment Variables dialog. Take care in modifying the prompt.
If you do modify the shell prompt save a copy of the original git-prompt.sh file before making
your edits.

Linux treats new terminal windows as non-login shells. Add shell customization settings to
the .bashrc file. If you plan to login remotely to your machine then create a .bash_profile and add
settings there as well.

MacOS launches new terminal windows with login-shells. Add shell customizations to your
.bash_profile. You’ll also need to modify your PATH variable to include the paths to Sublime Text
and Visual Studio Code if you want to launch those applications from the command-line.

Figure 1-78: macOS .bash_profile Settings Recommended So Far — File Shown Open in Vim

Hey! Are we about
done here?

Chapter 1: Part 1 Preliminaries: Baseline Development Environment Configuration Checklist

Computer Scripting Techniques with Python © 2023 Pulp Free Press 59

0
0
0
0
0
0
0
1

8 Configuration Checklist

Table 1-2 summarizes the development environment suggested configurations for each oper-
ating system discussed in this chapter.

Windows Linux Mint macOS

Home
Directory Name

No spaces in home directory name

Initial
Housekeeping

View hidden files and folders
View file suffixes
Add shortcuts to frequently-used applications to desktop and taskbar/dock
Add shortcuts to frequently-accessed hard drive(s) and folders
Create development project folder
Configure folders to open in home directory
Configure terminal shortcuts to open in home directory or projects directory

Terminal & Shell PowerShell
Command Prompt
Git for Windows
Git Bash (mintty)
Terminals open in home
directory

Terminal
Terminator
Bash
Terminals open in home
directory

Terminal
iTerm2
Bash
Terminals open in home
directory

Text Editor Vi/Vim - Customize via .vimrc and show line numbers
Nano
Sublime Text - Customize and add Pretty JSON plugin

Integrated
Development
Environment

Visual Studio Code
Add Microsoft Python Extension

Package
Managers

winget apt Homebrew (brew)
Install tree command

Python 3.10 or
3.11

Install w/winget or manu-
ally

Install w/apt or manually w/
dpkg

Install with brew

Environment
Variables &
Shell Profiles

Set environment variables
via System Properties
Add aliases to .bash_pro-
file
Add alias to call python
and tree with winpty
Customize prompt via /
etc/profile.d/git-prompt.sh

Use .bashrc
Aliases
Shell variables
Modify PATH as required

Use .bash_profile
Aliases
Shell variables
iTerm2 shell integration
Modify PATH to start VS
Code and Sublime Text from
command line

Table 1-2: Development Environment Configuration Checklist

Configuration Checklist Chapter 1: Part 1 Preliminaries: Baseline Development Environment

60 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
0
1

Summary

The purpose of initial housekeeping configuration is to provide quick access to frequently
used files, folders, and applications. Although terminology differs between macOS, Linux, and
Microsoft Windows for similar concepts the objectives are the same. You want to see hidden files
and folders, especially in your home directory, and you want quick and easy access to frequently
used applications, folders, and files on either your desktop, taskbar, or both. The most important
configuration you can make is to ensure your home directory name has no spaces.

A terminal supports text based human/computer interaction. The purpose of a terminal is to
present user input to the computer and render output from the computer. Most terminal applica-
tions are actually terminal emulators and if necessary can be used to connect to older computer
systems that require specific terminal types.

A shell is a program launched by the terminal when you log in. The shell dictates what types
of commands and scripts can be executed. The bash shell is a popular shell, which is used
throughout this book, but there are others.

Together, the terminal and the shell provide a command-line interface to the computer. The
prompt is the line on which you enter shell commands and is usually indicated by a dollar sign ‘$’
or hash tag ‘#’ character depending on whether you’re logged in as a user or as root. Cursor posi-
tion is indicated with an underscore ‘_’ or box ‘█’character. You can customize the prompt via ter-
minal preferences and shell profile settings.

The Git Bash (mintty) terminal and its version of the bash shell will serve as the lowest com-
mon denominator for all bash script examples in this book.

A software developer needs a good text editor. The editors discussed in this chapter, Vi/Vim,
Nano, and Sublime Text work cross platform The first two work in a terminal and do not require a
GUI nor a mouse. They are ideal text editors for times when you must remote in to a UNIX-like
virtual machine running in the cloud or in a Docker container.

Vim stands for Vi IMproved and ships along with Nano on macOS, Linux, and Git for Win-
dows. Vim has a steep learning curve but is extremely powerful and highly configurable but it’s
not everyone’s cup of tea. If the thought of using key-commands to navigate text makes you want
to throw a commode out of a window then Nano is a good alternative to Vim.

Sublime Text is an ideal workstation text editor in that it runs in a GUI and works with a
mouse as you’d expect. It, too, runs on all three platforms, is highly configurable, and can be
extended via plugins. You can launch Sublime Text from the command line by typing the com-
mand subl at the prompt followed optionally by a filename.

Don’t make the common novice mistake of editing text files with a word processor application
as you may end up adding hidden codes to the file which will dork everything up.

Visual Studio Code is a powerful cross-platform Integrated Development Environment (IDE).
It comes out of the box with a ton of helpful features and anything not already built in can be
added via extensions. Visual Studio Code can be launched from the command-line by typing the
command code followed optionally by the name of a folder or file. This works automatically
when installing on Linux Mint with the dpkg command because the installation directory /usr/bin
is already part of the PATH environment variable. You’ll need to configure the PATH environment
variable on Windows and macOS to launch VS Code from the command line.

Use a package manager when possible to install and manage software. Microsoft Windows 10
and 11 ship with winget, Linux Mint uses apt, and macOS can use Homebrew (brew).

Chapter 1: Part 1 Preliminaries: Baseline Development Environment Configuration Checklist

Computer Scripting Techniques with Python © 2023 Pulp Free Press 61

0
0
0
0
0
0
0
1

Unless you have a compelling reason otherwise, you should always install the latest stable
version of Python on your system. Windows, macOS, and Linux users have options regarding
how to install Python. You can either download the installer directly from the Python.org website
or use a package manager. You should be able to run the latest stable version of Python 3.x with
the command python3.

macOS comes with Python 2 and 3 already installed. To execute Python 2.x use the python
command. You won’t need Python 2 for this book but you do need to be aware it’s installed. To
run Python 3.x use the python3 command. To install the latest stable version of Python 3.x on
macOS use the command brew install python3. If you install Python 3.11 with brew you can
run it by using the python3.11 command. To run Python 3.11 on Linux Mint use the command
python3. All examples in this book will run on Python 10.8 and above.

Regardless of which operating system you ultimately use there are a handful of issues you
need to understand regarding bash shell configuration settings:

• What type of shell does your terminal application launch? login vs. non-login
• To which shell configuration file should you add your custom settings
• How to set environment variables
• How to customize the PATH environment variable
• How to create aliases
• How to customize your shell prompt
• How to display the active Git branch in the shell prompt

Git for Windows is not a full-fledged Linux system but it does come fully configured to dis-
play the active Git branch at the command prompt. You should set environment variables via the
System Settings > Environment Variables dialog. Take care in modifying the prompt. If you do
modify the shell prompt save a copy of the original git-prompt.sh file before making your edits.

Linux treats new terminal windows as non-login shells. Add shell customization settings to
the .bashrc file. If you plan to login remotely to your machine then create a .bash_profile and add
settings there as well.

MacOS treats new terminal windows as login-shells. Add shell customizations to your .bash_-
profile. You’ll also need to modify your PATH variable to include the paths to Sublime Text and
Visual Studio Code if you want to launch those applications from the command-line.

Skill-Building Exercises

1. Linux Commands: Download a copy of The Linux Commands Handbook by Flavio Copes
https://bjpcjp.github.io/pdfs/devops/linux-commands-handbook.pdf and research the commands
used in this chapter including: ls, ls -al, cp, mv, cd, chmod, mkdir, export, and alias.

2. Bash Scripting: Download a copy of Pro Bash Programming: Scripting the GNU/Linux Shell
by Chris F.A. Johnson, Apress, https://doc.lagout.org/programmation/Shell%20/
Pro%20Bash%20Programming.pdf and research what constitutes a bash script and how to
make a script executable with the chmod command.

3. Research winpty Command: For Windows users who are using Git for Windows and the Git
Bash terminal, the winpty command is used to call Windows commands or applications that

https://bjpcjp.github.io/pdfs/devops/linux-commands-handbook.pdf
https://bjpcjp.github.io/pdfs/devops/linux-commands-handbook.pdf
https://doc.lagout.org/programmation/Shell%20/Pro%20Bash%20Programming.pdf
https://doc.lagout.org/programmation/Shell%20/Pro%20Bash%20Programming.pdf

Configuration Checklist Chapter 1: Part 1 Preliminaries: Baseline Development Environment

62 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
0
1

are written to interface with a Windows terminal. Conduct some deeper research into the need
for the winpty command.

4. Windows Package Manager winget: Windows developers — research the winget package
manager and browse available packages to see what other software development tools or appli-
cations you may want to install.

5. Customize Shell Prompt: Dive deeper into shell prompt configuration for your particular
operating system and shell. For the Git Bash terminal you’ll need to edit the /etc/profile.d/git-
prompt.sh file. For Linux Mint you’ll need to edit your .bashrc. For macOS add your prompt
configuration to your .bash_profile.

Suggested Projects

1. Windows Configuration: For Microsoft Windows users — step through the sections in this
chapter related to Windows and complete the configuration.

2. Linux Configuration: For Linux users — step through the sections in this chapter related to
Linux and complete the configuration. Although the chapter focuses on Linux Mint, which is a
Debian/Ubuntu derivative, the general steps remain the same.

3. macOS Configuration: For macOS users — step through the sections in this chapter related to
macOS and complete the configuration. Note that if you are using older versions of macOS you
may get warning messages when installing packages with Homebrew. Newer versions of
macOS, especially Ventura and beyond, will have a slightly different but similar user interface
compared to screenshots of Mojave and Catalina used in this chapter.

4. Terminal Split Panes and Multiplexing: For Linux users using Terminator and macOS users
using iTerm2 research advanced terminal features such as splitting the terminal window into
multiple vertical and horizontal panes. Also, research terminal multiplexing with tmux.

5. Git Bash Terminal Multiplexing: Windows users — Scour the Internet and search for ways to
add terminal multiplexing to the Git Bash terminal. (Hint: msys2)

6. Windows Subsystem for Linux: Windows users — If you want a more robust implementation
of Linux vs. the streamlined set of tools offered by Git for Windows, research the Windows
Subsystem for Linux.

7. The Awesome Vim Configuration: If you want to use Vim I suggest you install the Awesome
vimrc configuration found at the The Ultimate vimrc GitHub repository: https://github.com/
amix/vimrc Follow the instructions found in the repository’s README.md.

8. Update Bash on macOS: macOS ships with an older version of bash, which will work per-
fectly fine for all the examples in this book, still, it’s a good idea to upgrade. To check the cur-

https://github.com/amix/vimrc
https://github.com/amix/vimrc

Chapter 1: Part 1 Preliminaries: Baseline Development Environment Configuration Checklist

Computer Scripting Techniques with Python © 2023 Pulp Free Press 63

0
0
0
0
0
0
0
1

rent version of bash type: bash --version If it hasn’t already been upgraded it will be version
3.2.x or thereabouts. Use the Homebrew package manager to install the latest edition of bash.
While you’re at it install the bash-completion package.

9. Neovim Installation and Configuration: Vim doesn’t have to be brutally minimalistic nor
boring. In fact, it can be fun to install different flavors of Vim and scour the Internet for interest-
ing ways to configure and customize the text editor for software development. Download and
install Neovim https://neovim.io and research customization options. One option is to use a
ready-made theme like LunarVim https://www.lunarvim.org.

Self-Test Questions

1. In your own words state why you think it’s important to have a properly configured develop-
ment environment.

2. What command is used to run tools and applications written for the Windows console on the
Git Bash (mintty) terminal?

3. What’s the difference between a login and non-login shell?

4. Which shell configuration file does a non-login shell use? How about a login shell?

5. On macOS, what type of shell is being launched by default, login or non-login?

6. On macOS, what command is used to run the latest stable edition of Python 3.x?

7. On macOS, assuming you have installed the packages python3 and python@3.11 via Home-
brew, what’s the difference between running python vs. python3 vs. python3.11?

References

Official Python Website, https://python.org

Bruce Chittenden, James Hyde, and Jeffrey P. Radick. 1982. A scheme for terminal I/O not
requiring interrupts. In Proceedings of the 20th annual Southeast regional conference (ACM-SE
20). Association for Computing Machinery, New York, NY, USA, 66–72. https://doi.org/10.1145/
503896.503909

The DEC VT100 Terminal, http://www.columbia.edu/cu/computinghistory/vt100.html

DEC VT100 Image, Jason Scott, CC BY 2.0 <https://creativecommons.org/licenses/by/2.0>,
via Wikimedia Commons

http://www.columbia.edu/cu/computinghistory/vt100.html
https://python.org
https://neovim.io
https://www.lunarvim.org

Configuration Checklist Chapter 1: Part 1 Preliminaries: Baseline Development Environment

64 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
0
1

Teletype Image, Arnold Reinhold, CC BY-SA 3.0 <https://creativecommons.org/licenses/by-
sa/3.0>, via Wikimedia Commons

Pro Bash Programming: Scripting the GNU/Linux Shell, Chris F. A. Johnson, Apress, ISBN-
13: 978-1-4302-1998-9, Source: https://doc.lagout.org/programmation/Shell%20/
Pro%20Bash%20Programming.pdf

MinTTY Terminal, https://mintty.github.io

MinTTY Terminal Options, https://mintty.github.io/mintty.1.html#OPTIONS

Git For Windows, https://gitforwindows.org

MSYS2, https://www.msys2.org

Git SCM, https://git-scm.com

iTerm2, https://iterm2.com/index.html

Xcode Releases, https://xcodereleases.com

Apple Developer Website, https://developer.apple.com

Terminator Linux Terminal, https://terminator-gtk3.readthedocs.io/en/latest/

The Ultimate vimrc Repository, https://github.com/amix/vimrc

GNU Nano Editor Website, https://www.nano-editor.org/dist/v2.9/nanorc.5.html

Top Five Cross-Platform Developer Text Editors, YouTube Video, PulpFreePress, https://
www.youtube.com/watch?v=k3wwDcyN8yA

Sublime Text Website, https://www.sublimetext.com

Sublime Text Linux Repositories, https://www.sublimetext.com/docs/linux_repositories.html

Microsoft Visual Studio Code Website, https://code.visualstudio.com/

RPM Package Manager, https://rpm.org

Yellowdog Updater Modified (yum) Package Manager, http://yum.baseurl.org

Advanced Package Tool (apt) Package Manager, https://wiki.debian.org/Apt

winpty Command GitHub Repository, https://github.com/rprichard/winpty

https://ss64.com/bash/syntax-prompt.html
https://wiki.debian.org/Apt
http://yum.baseurl.org
https://rpm.org
https://code.visualstudio.com/
https://www.sublimetext.com/docs/linux_repositories.html
https://www.sublimetext.com
https://www.youtube.com/watch?v=k3wwDcyN8yA
https://www.youtube.com/watch?v=k3wwDcyN8yA
https://www.nano-editor.org/dist/v2.9/nanorc.5.html
https://github.com/amix/vimrc
https://terminator-gtk3.readthedocs.io/en/latest/
https://developer.apple.com
https://xcodereleases.com
https://iterm2.com/index.html
https://git-scm.com
https://www.msys2.org
https://gitforwindows.org
https://mintty.github.io/mintty.1.html#OPTIONS
https://mintty.github.io
https://doc.lagout.org/programmation/Shell%20/Pro%20Bash%20Programming.pdf
https://doc.lagout.org/programmation/Shell%20/Pro%20Bash%20Programming.pdf

Chapter 1: Part 1 Preliminaries: Baseline Development Environment Configuration Checklist

Computer Scripting Techniques with Python © 2023 Pulp Free Press 65

0
0
0
0
0
0
0
1

How-To: Setup Prompt Statement Variables website, https://ss64.com/bash/syntax-
prompt.html

ANSI Escape Code, Wikipedia, https://en.wikipedia.org/wiki/ANSI_escape_code#Escape_se-
quences

cmd.exe Command Reference, https://learn.microsoft.com/en-us/windows-server/administra-
tion/windows-commands/cmd

Notes

https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/cmd
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/cmd
https://en.wikipedia.org/wiki/ANSI_escape_code#Escape_sequences
https://en.wikipedia.org/wiki/ANSI_escape_code#Escape_sequences
https://ss64.com/bash/syntax-prompt.html
https://ss64.com/bash/syntax-prompt.html

Configuration Checklist Chapter 1: Part 1 Preliminaries: Baseline Development Environment

66 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
0
1

	Ch-1: Part 1 Preliminaries: Baseline Development Environment
	1.1 No Spaces In Home Directory Name
	1.2 Windows
	1.2.1 Show Hidden Files and Folders
	1.2.2 Handy Desktop and Taskbar Shortcuts
	1.2.3 Additional Application Shortcuts — For Now
	1.2.4 Drive and Folder Shortcuts
	1.2.5 Create Development Projects Folder

	1.3 macOS
	1.3.1 Show Hard Drives, Connected Servers, and file suffixes
	1.3.2 Add Application Aliases To Finder Desktop and Dock
	1.3.3 Show Hidden Files and Folders
	1.3.4 Create Development Projects Folder
	1.3.5 Open Finder Windows In Home Directory

	1.4 Linux
	1.4.1 View Hidden Files And Folders
	1.4.2 Create Development Project Folder
	1.4.3 Add Missing Icons To Desktop

	1.5 Parting Words
	2 Terminal Applications
	2.1 What Is A Terminal?
	2.1.1 Some History

	2.2 What Is A Shell?
	2.3 Standardizing On Bash
	2.4 Windows
	2.4.1 Git For Windows
	2.4.1.1 Installation
	2.4.1.2 Changing Terminal Window Properties

	2.4.2 Exploring The Git Bash (mintty) Terminal
	2.4.3 Parting Thoughts On Git For Windows

	2.5 macOS
	2.5.1 Install iTerm2
	2.5.2 Install Apple Xcode And Command-Line Developer Tools
	2.5.3 iTerm2 Terminal Configuration
	2.5.3.1 iTerm2 Preferences

	2.6 Linux
	2.6.1 Install And Configure Terminator

	2.7 Parting Thoughts On Terminals And Shells

	3 Text Editors
	3.1 Vi/Vim
	3.1.1 Basic Usage
	3.1.1.1 Four Primary Vim Modes
	3.1.1.1.1 Normal Mode
	3.1.1.1.2 Insert Mode
	3.1.1.1.3 Command Mode
	3.1.1.1.4 Visual Mode

	3.1.2 Customize Vim
	3.1.3 Parting Thoughts On Vi/Vim

	3.2 Nano
	3.3 Sublime Text
	3.3.1 Install Sublime Text
	3.3.2 Unfarkle Sublime Text Settings
	3.3.3 Launch Sublime Text From The Command Line

	3.4 Parting Thoughts On Text Editors

	4 Visual Studio Code
	4.1 Install Visual Studio Code
	4.2 Add Extensions For Python Development
	4.3 Launch Visual Studio Code From The Command-Line

	5 Package Managers
	5.1 Windows
	5.1.1 winget

	5.2 macOS
	5.2.1 Homebrew (A. K. A. brew)

	5.3 Linux Mint (Debian/Ubuntu)
	5.3.1 APT

	6 Install, Configure, and Run Python
	6.1 Windows
	6.2 macOS
	6.2.1 Python vs. Python3

	6.3 Linux

	7 Configure Environment Variables And Shell Profiles
	7.1 What Is An Environment Variable?
	7.2 Windows
	7.2.1 Create Command Aliases In .bash_profile
	7.2.2 Customize Bash Prompt

	7.3 Linux
	7.3.1 Create Aliases In .bash_aliases
	7.3.2 Customize Prompt
	7.3.3 Display Git Branch In The Shell Prompt
	7.3.4 Export Environment Variables

	7.4 macOS
	7.4.1 Create Aliases In .bash_profile
	7.4.2 Customize Prompt
	7.4.3 Export Environment Variables

	8 Configuration Checklist

