
Computer Scripting Techniques with Python © 2023 Pulp Free Press 337

0
0
0
0
1
0
1
1

00001011

Ch-11: A Bash Build Script

Learning Objectives
• Automate repetitive Python development tasks with a bash build script
• State the purpose and benefits of using a bash build script
• Define and use constants in a bash script
• Define and use variables in a bash script
• Define and call functions in a bash script
• Process bash script command-line arguments
• Pass command-line arguments to functions
• Organize bash script code with functions
• Detect the operating system
• Check for and verify presence of required development tools
• Execute a default action when calling bash script with no arguments
• Configure and display bash script usage help
• Apply the chmod command to make a bash script executable
• Demonstrate your ability to execute a bash script from the command line

CHAPTER 11

A Bash Build Script

Chapter 11: A Bash Build Script

338 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
0
1
1

Introduction

As project complexity grows, so too grows the number of commands you must memorize to
run your project’s development tools. For example, in the previous chapter, you learned how to
create virtual environments with Pipenv. You also learned how to run a Python program in a vir-
tual environment with the pipenv run command. Now, add a testing framework, documentation
generator, linter, and other tools, and you’ll realize soon enough how easy it is to make simple
mistakes when entering these commands manually on the command line. Using a bash build
script solves this problem.

In this chapter, I introduce you to a baseline bash build script (build.sh) that simplifies project
management and allows you to create a set of standardized commands with which you can run the
various tools associated with your project. The baseline build script verifies the presence of
required development tools. It’s flexible, too. You can customize it to suit your needs. It’s cross
platform as well. The baseline build script runs on macOS, Linus, and Windows within a Git Bash
terminal. It supplies usage instructions, which is the default action the script performs when you
run it with no arguments.

It is not my intent to give you a complete course in bash scripting. That would require a dedi-
cated book on the topic (Pro Bash Programming). Rather, I give you to a short but complete build
script, show you how to run it, explain how it works, and point out how to extend it to suit your
needs. Once you get the hang of using the build script, you’ll wonder how you ever lived without
it!

Automating repetitive development tasks with a bash build script speeds up the software
development process by eliminating common mistakes you’d normally make by trying to run dif-
ferent development tools manually, from memory, from the command line. Bash scripting, even
the small, measured dose you’ll learn in this chapter, is a professional skill worth adding to your
programmer’s tool belt.

Perhaps the most important takeaway from this chapter, and from the book in general, is the
more tasks you can automate, the less likely you are to screw something up trying to do it manu-
ally. This has an overall net positive effect on software quality, but most importantly, it reduces
your stress level and helps you live a long, happy life.

1 Baseline build.sh Script

Example 11.1 gives the baseline bash build script called build.sh.
11.1 build.sh

1 #!/bin/bash
2
3 # Global Constants
4 declare -r SRC_DIR="src"
5 declare -r TESTS_DIR="tests"
6 declare -r DOCS_DIR="docs"
7
8 # TOOLS: A list of required tools. Edit as required.
9 declare -r TOOLS="git python3 pipenv"
10
11 # Global Variables

https://doc.lagout.org/programmation/Shell%20/Pro%20Bash%20Programming.pdf

Chapter 11: A Bash Build Script

Computer Scripting Techniques with Python © 2023 Pulp Free Press 339

0
0
0
0
1
0
1
1

12 declare _confirm=1
13
14 check_tools() {
15 echo "Checking for required tools..."
16 for tool in $TOOLS
17 do
18 command -v $tool &> /dev/null && \
19 ([$_confirm -eq 1] && echo "$tool: OK" || true) || \
20 (echo "$tool: MISSING"; exit 1);
21 done
22 }
23
24 display_usage() {
25 echo
26 echo " Usage: "
27 echo " ./`basename $0` [no argument | --checktools | --help | "
28 echo " --install | --runmain | --runtests | "
29 echo " --docstrings] "
30 echo
31 echo " Examples: "
32 echo " $0 # Default: --checktools and --help"
33 echo " $0 --checktools # Check for required tools"
34 echo " $0 --help # Show this message"
35 echo " $0 --install # pipenv install && install --dev"
36 echo " $0 --runmain # pipenv run python3 $SRC_DIR/main.py"
37 echo " $0 --runtests # pipenv run pytest $TESTS_DIR/"
38 echo " $0 --docstrings # pipenv run pydocstyle $SRC_DIR/"
39 echo
40 }
41
42 default_action() {
43 check_tools
44 display_usage
45 }
46
47 runtests() {
48 pipenv run pytest $TESTS_DIR/
49 }
50
51 runmain() {
52 if [["$OSTYPE" == "linux-gnu"*]]; then
53 pipenv run python3 $SRC_DIR/main.py
54 elif [["$OSTYPE" == "darwin"*]]; then
55 pipenv run python3 $SRC_DIR/main.py
56 elif [["$OSTYPE" == "msys"*]]; then
57 pipenv run python $SRC_DIR/main.py
58 else
59 echo "Unknown execution environment. "
60 echo "Edit build.sh and add your os type to the runmain() method"
61 fi
62 }
63
64 install() {
65 pipenv install --dev
66 pipenv install
67 }
68
69 check_doc_strings() {
70 pipenv run pydocstyle -v $SRC_DIR/

Chapter 11: A Bash Build Script

340 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
0
1
1

71 }
72
73 process_arguments() {
74 case $1 in
75 --help) # Display usage and help screen
76 display_usage
77 help
78 ;;
79 --checktools) # Verfy required tools are installed
80 check_tools
81 ;;
82 --runtests) # Run all tests
83 runtests
84 ;;
85 --runmain) # Run application
86 runmain
87 ;;
88 --install) # install all packages listed in Pipfile
89 install
90 ;;
91 --docstrings) # Check source files for valid docstrings
92 check_doc_strings
93 ;;
94 *)
95 default_action
96 esac
97 }
98
99 main(){
100 process_arguments "$1"
101 exit 1
102 }
103
104 # Call main() with all command-line arguments
105 main "$@"
106

Referring to example 11.1 — This script is the focus of this chapter. I will demonstrate its
operation, explain how it works, and show you how to modify it to suit your needs. But first, you
need to be aware of a few assumptions and take care of several preliminaries.

1.1 Assumptions

Although you can configure the baseline build.sh script to suit your needs, in its current con-
figuration, I’m making the following assumptions:

• You’re using the baseline project organizational structure presented in Chapter 9:
Project Organization. Specifically, you’re putting source files in the project’s src
directory, unit tests in the project’s tests directory, and project documentation in
the docs directory.

• You’re using Pipenv to create and manage virtual environments.
That’s it! At least that’s all I can think of for now. OK, before running the script, you need to

take care of a few preliminaries.

Chapter 11: A Bash Build Script

Computer Scripting Techniques with Python © 2023 Pulp Free Press 341

0
0
0
0
1
0
1
1

1.2 Preliminaries

To run the script, you need to create a virtual environment with Pipenv, install two packages,
and make the script executable.

1.2.1 Create Pipenv Virtual Environment

Use Pipenv to create a virtual environment with the Python version of your choice. Be sure
you’re in your project folder before creating the virtual environment. I’ll create a virtual environ-
ment with Python version 3.10.
pipenv --python 3.10

Figure 11-1 shows the results of running this command.

Referring to figure 11-1 — You can use any version of Python you require. As I stated in
Chapter 1, my only general assumption is that it’s Python 3.10 or greater as many examples in the
book use features found in more recent versions of Python. (Note: As a general rule, code written
for older versions of Python 3 will run on newer versions of Python 3, but that’s a one-way street.
Code written for newer versions of Python 3 will most likely not run on older versions of Python
3, especially if the code targets specific features of the newer version of Python.)

1.2.2 Install pydocstyle and pytests Packages

Once you have created a virtual environment with Pipenv, install the following packages for
development: pydocstyle and pytest.

The pydocstyle package is used to check for valid and missing docstrings. PEP 257 - Doc-
string Conventions, provides guidance on how to format and apply Python docstrings. Install the
package for development with the following command:
pipenv install --dev pydocstyle

The pytest package is a unit testing framework I much prefer over Python’s unittest library.
Install the pytest package for development with the following command:
pipenv install --dev pytest

Figure 11-1: Installing a Python 3.10 Virtual Environment with Pipenv

Chapter 11: A Bash Build Script

342 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
0
1
1

Figure 11-2 shows the results of running these two commands.

The project directory structure should now resemble that shown in figure 11-3.

Referring to figure 11-3 — Recall from Chapter 10 that the Pipfile.lock is created when you
install the first package into the project’s virtual environment. Now, let’s make the build.sh file
executable.

Figure 11-2: Installing pydocstyle and pytest Packages for Development

Figure 11-3: Project Directory Structure after Installing Virtual Environment and Packages

Chapter 11: A Bash Build Script

Computer Scripting Techniques with Python © 2023 Pulp Free Press 343

0
0
0
0
1
0
1
1

1.2.3 Make The build.sh Script Executable

Before you can run a bash script you need to change its file permissions to make it an execut-
able file. Use the chmod command to change a file’s permissions. To make the build.sh file exe-
cutable, use the chmod command like so:
chmod a+x build.sh

-or-
chmod 755 build.sh

Either version of the command will work. Figure 11-4 shows the directory listing after chang-
ing the build.sh file’s execute permissions. Can you spot the differences between figure 11-3 and
this listing?

Referring to figure 11-4 — I highlighted the build.sh file. Notice the file permission bits have
changed. I suggest you write the chmod command down in your Engineer’s Notebook. If you
write bash scripts, you’ll need to make them executable before you can run them. OK, let’s run
this puppy.

1.3 Run The Build.sh Script

To run the build.sh script, make sure you’re in the project’s root directory (Where you should
have been all along!), and preface it with the dot slash characters "./" like so:
./build.sh

You should see the command usage display as shown in figure 11-5.
Referring to figure 11-5 — Running the build.sh script with no arguments triggers a default

action, namely, it checks for required development tools (git, python3, and pipenv), and then
displays help on how to use the script with usage examples.

The baseline script implements the following command-line arguments: --checktools, --
help, --install, --runmain, --runtests, and --docstrings. The Examples section includes
a brief comment for each command that explains what command is actually running. For exam-
ple, when you run ./build.sh --runmain, the script is actually running pipenv run python3
src/main.py. Where have you seen that command before?

Figure 11-4: Project Directory Listing after Changing build.sh Execute Permissions.

Build.sh script Anatomy Chapter 11: A Bash Build Script

344 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
0
1
1

Quick Review

The baseline build.sh script is configured to work with the baseline project organizational
structure presented in chapter 9. Specifically, it expects to find source files in the project’s src
directory, unit tests in the tests directory, and project documentation in the docs directory. You
can, however, configure the script to suit your needs.

Before running the script, create a virtual environment with Pipenv, install the pydocstyle and
pytest packages, and give the build.sh file executable permissions with the chmod command.

2 Build.sh script Anatomy

In this section, I will walk you through the build.sh script code and explain how it works.
While this section is not a complete treatment on bash scripting, you should walk away with a
fundamental understanding of what the script is doing and how to modify it to suit your needs.
The best way to wrap your head around the script is to first understand how it’s structured, and
then trace the various execution paths. So, let’s start at the top and learn what makes this a bash
script. Perhaps the best way to proceed would be to print the build.sh script given in example 11.1
and take notes as we move along, that way you don’t need to flip back and forth. Just a sugges-
tion.

Figure 11-5: Running ./build.sh with No Arguments

Chapter 11: A Bash Build Script Build.sh script Anatomy

Computer Scripting Techniques with Python © 2023 Pulp Free Press 345

0
0
0
0
1
0
1
1

2.1 The Shebang or Hash-Bang

The very first line of the script, line one, contains a very important sequence of characters
referred to as either the shebang or hash-bang. The shebang is a special type of comment that con-
sists of the hash tag character plus the exclamation point '#!'. The purpose of the shebang is to
indicate which shell should execute the script. Since this is a bash script, its shebang looks like
this:
#!/bin/bash

Every bash script starts with a shebang.

2.2 Comments

Comments begin with the hashtag character '#'. Everything to the right of the hashtag is
ignored up to the end of the line. Comments appear throughout the script to add context and
explanation to what’s going on in the code.

2.3 Constants and Variables

On lines 4 through 12, I’ve declared several constants and a variable with the help of the
declare keyword. The difference between a constant and a variable is that constants are set to be
readonly with the -r option. Also, by convention, which is nothing more than a bunch of software
developers shaking hands and doing pinky swears, constants appear as ALL_CAPS with under-
scores separating words. Variables, on the other hand, consist of all lowercase characters. For
more context see the Google Shell Style Guide.

The constants on lines 4 - 6 declare names for project artifact directories. For example, the
constant on line 4 declares a constant named SRC_DIR, short for source directory, that contains
the string "src" like so:
declare -r SRC_DIR="src"

I’ve declared these constants to make it easy to change the script if you use different names for
these artifact directories.

To use a constant or a variable, preface it with a dollar sign character '$' like so "$SRC_DIR".
Refer to the body of the display_usage() function beginning on line 24 to see this in action.

You can scan the script to see where the constants appear. If one day you woke up on the
wrong side of the bed and decided to put your source code in the "mycode" directory, all you’d
need to do to make the script work is to change the constant to read:
declare -r SRC_DIR="mycode"

And the script would march along smartly.
The TOOLS constant declared on line 9 is set to a string containing the names of required

development tool commands separated by a space like so:
declare -r TOOLS="git python3 pipenv"

The spaces that separate each command name in the string become important if you want to
process the string like a list, which is what happens in the body of the check_tools() function
beginning on line 14. More about this function later.

https://google.github.io/styleguide/shellguide.html

Build.sh script Anatomy Chapter 11: A Bash Build Script

346 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
0
1
1

2.4 Processing Command-Line Arguments

Skip down to line 105 of the build.sh script. Here the main method is called with the special
parameter"$@" as an argument, indicating that all of the command-line arguments present are
passed to the main() method defined on line 99. The quotes surrounding the $@ characters indi-
cate the requirement to preserve arguments that contain white space.

You learned earlier that you can call the build.sh script with or without arguments like so:
./build.sh

./build.sh --checktools

./build.sh --help

./build.sh --install

./build.sh --runmain

./build.sh --runtests

./build.sh --docstrings

When passing the "$@" parameter to the main method, the "$@" parameter is expanded to the
positional arguments "$1", $2", $3", etc. The special positional argument $0 indicates the path and
name of the script being executed and is not included in the "$@" parameter expansion.

In normal operation, and as currently configured, the build.sh script is only concerned with the
first positional argument $1. On line 100, the main() function passes the incoming parameter
"$1" as an argument to the process_arguments function. So, if the build.sh script is called with
two arguments like so:
./build.sh --checktools --runmain

The call to main would pass all of these arguments to the main() function with the "$@" argu-
ment. In the body of the main() method these arguments become $1 and $2, but since main is
only interested in the first argument, it calls the process_arguments function with the argument
"$1". Inside the body of the process_arguments() function on line 74, the incoming argument
is accessed as the parameter name $1.

2.5 Translate Command-Line Arguments Into Actions

It’s in the body of the process_arguments() function where command-line arguments get
translated into script actions. This is done in the body of a case statement which begins on line
74.

2.5.1 The case Statement

The case statement begins with the keyword case on line 74 and ends with its reverse, esac,
on line 96. Everything between the case and esac keywords is considered to be in the body of the
case statement. The value of the $1 parameter is checked against various values, or cases, indi-
cated by the ')' characters. For example, the first case, --help), is defined on line 75.

You can read a case statement like a series of if statements like so: "If the $1 parameter con-
tains the value --help then call the display_usage function followed by the help function, and
then exit the case ";;"".

Chapter 11: A Bash Build Script Build.sh script Anatomy

Computer Scripting Techniques with Python © 2023 Pulp Free Press 347

0
0
0
0
1
0
1
1

From here on out you can trace the execution of each case to see which functions are called
for each command-line argument value. For example, you can see that when the script is run with
the --runmain argument like so:
./build.sh --runmain

The --runmain) case executes, which in turn calls the runmain function. The runmain()
function definition begins on line 51. It looks complicated, but what it’s doing is checking the
operating system with the help of the bash OSTYPE shell variable and a series of if/then state-
ments.

2.5.2 The if Statement

Starting at the beginning of the if statement on line 52, you can read it as: “If the OSTYPE
variable contains the value "linux-gnu" then execute the main.py module using the command
pipenv run python3 src/main.py”

The three expected OSTYPEs include linux-gnu, darwin, and msys, which correspond
respectively to Linux, macOS, and Windows running the Git Bash terminal. If the Git Bash termi-
nal is detected, the script executes the main.py file with the python command.

If the script finds itself running on an unknown system, the else clause on line 58 executes
and writes an error message to the console.

Like the case statement, an if statement begins with the keyword if and ends with its
reverse fi. This is just something you need to get used to when writing bash scripts. The body of
an if statement can contain any number of elif clauses, which stands for else if. If neither the if
clause nor any of the elif clauses execute, the else clause executes.

2.6 Check Presence of Required Development Tools

When the build.sh script is run with the --checktools command-line argument, the
check_tools method is called. It uses a for statement to step through each required tool in the
TOOLS constant string. Note that the TOOLS constant contains a string. Each tool name is sepa-
rated by a space, and the for statement will treat the space as a separator and treat the string as an
array of strings. So, for example, the TOOLS constant contains the tool names: "git python3
pipenv". The for statement starts like so:
for tool in $TOOLS

You can read this statement as “For each tool listed in the TOOLS string...”. The rest of the
code in the body of the for statement, that is the code between the do and the done keywords,
attempts to execute the tool command with the following line of code:
command -v $tool $> /dev/null && \

If the tool is present and executes successfully, this line evaluates to:
true && \

The && is a logical AND connector, The '\' is a line continuation character that allows you to
split long commands across multiple lines. Speaking of the next line, the code on line 19 is con-
tained in parentheses:
([$_confirm -eq 1] && echo "$tool: OK" || true) || \

Build.sh script Anatomy Chapter 11: A Bash Build Script

348 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
0
1
1

This line starts by comparing the _confirm variable with the value 1. If it evaluates to true,
the echo statement prints out the name of the tool followed by “OK” (See figure 11-5). If it evalu-
ates to false, the || will execute line 20, which prints the tool name followed by “MISSING”
and then calls exit 1, which indicates an error condition.

Note that although I’m not doing so in this version of the script, you could call the
check_tools() function before attempting to execute each tool, check for the exit code 1, and
exit the script as appropriate.

I recommend you experiment with the tools listed in the TOOLS constant. Add a tool name
that does not exist to see what happens.

2.7 Displaying Help and Usage

When the build.sh script executes with no arguments or with the --help argument, it displays
guidance on how to use the script. This is done in a straightforward manner as shown in the dis-
play_usage() function. Note the use of the $0 parameter in the echo statements to display the
script name. Also note the use of the constants $SRC_DIR and $TESTS_DIR. Changing the con-
stant values will automatically update the help text.

2.8 Parting Thoughts

If you have a good understanding what the build.sh script does and how it works, you know
all the bash you need to know for the purposes of this book. I do recommend, however, that you
continue to study bash, especially how to automate tasks with bash scripts. The combination of
bash and Python puts an immense amount of power at your fingertips.

Quick Review

The build.sh script starts with a shebang, and consists of comments, constants, variables, and
code logically organized into functions. The build.sh script processes command-line arguments
with the help of a case statement. The case statement compares command-line argument values
against a set of cases and executes the code in the body of the corresponding case.

The special "$@" parameter represents all the arguments read from the command line. The
"$@" parameter expands into positional arguments: "$1", "$2", "$3", ... "$n". Arguments passed
to functions are referenced by positional parameters. The special parameter $0 represents the
name of the script.

Summary

The baseline build.sh script is configured to work in the baseline project organizational struc-
ture presented in chapter 9. Specifically, it expects to find source files in the project’s src direc-
tory, unit tests in the tests directory, and project documentation in the docs directory. You can,
however, configure the script to suit your needs.

Before running the script, create a virtual environment with Pipenv, install the pydocstyle and
pytest packages, and give the build.sh file executable permissions with the chmod command.

Chapter 11: A Bash Build Script Build.sh script Anatomy

Computer Scripting Techniques with Python © 2023 Pulp Free Press 349

0
0
0
0
1
0
1
1

The build.sh script starts with a shebang and consists of comments, constants, variables, and
code logically organized into functions. The build.sh script processes command-line arguments
with the help of a case statement. The case statement compares command-line argument values
against a set of cases and executes the code in the body of the corresponding case.

The special "$@" parameter represents all the arguments read from the command line. The
"$@" parameter expands to positional arguments: "$1", "$2", "$3", ... "$n". Arguments passed to
functions are referenced by positional parameters. The special parameter $0 represents the name
of the script.

Skill-Building Exercises

1. Study Bash Scripting Fundamentals: Procure the book Pro Bash Programming: Scripting the
GNU/Linux Shell, by Chris F.A. Johnson, Apress. Dive deeper into the various topics discussed
in this chapter. Focus on developing a firm understanding of what the build.sh script is doing
and how it works.

2. Experiment With TOOLS Constant: Add another tool name to the TOOLS constant defined
on line 9 of the build.sh script. Use a name that doesn’t exist, like "my_script", to see the effects
of a missing tool.

3. Study Shell Style Guide: Study Google’s Shell Style Guide and apply its recommendations to
bash scripts you create: https://google.github.io/styleguide/shellguide.html

4. Process Command-Line Arguments: Write a bash script and experiment with processing
command-line arguments. Pass all the command-line arguments to a main() function using the
special parameter "$@" or $@. Process the command-line arguments using a case statement.
Organize your code into functions. Don’t worry about what, exactly, the script will do. Seek to
really understand the difference in behavior between using "$@" with quotes and $@ without
quotes. Start by simply echoing the command-line argument back to the console to see how
spaces are treated.

5. Bash Shell Variables: Make a list of all the shell variables available to a base script and note
their purpose.

Suggested Projects

1. Build Script Modification: Modify the build.sh script to automatically detect the version of
Python available on the system and set a variable to that value. Replace all instances of hard-
coded references to python or python3 in the script with the variable. One possible name for
the variable might be python_version and could be declared and initialized like so:

declare python_version="python3"

https://doc.lagout.org/programmation/Shell%20/Pro%20Bash%20Programming.pdf
https://doc.lagout.org/programmation/Shell%20/Pro%20Bash%20Programming.pdf
https://google.github.io/styleguide/shellguide.html

Build.sh script Anatomy Chapter 11: A Bash Build Script

350 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
0
1
1

2. Script Idea - Initialize Project Directory: Write a bash script that initializes a project direc-
tory based on the project organizational structure given in chapter 9. Have the script take a com-
mand-line argument that specifies a path and project name.

Self-Test Questions

1. What’s the purpose of a bash build.sh script?

2. How does the build.sh script process command-line arguments?

3. What does the special parameter "$0" represent?

4. What does the special parameter "$@" expand into?

5. How does the "$@" parameter behave differently if referenced with and without quotes?

6. Which constant would you need to change if you stored your source code in a directory other
than src?

7. What value does the code snippet command -v $tool evaluate to if the $tool name can be
successfully executed? What value results if execution fails?

8. What does the -r mean when used to declare a constant?

9. How does a for statement treat a string of words separated by spaces?

10. Can you call a function before it is declared in the script? Explain your answer.

11. What’s does this sequence of characters #!/bin/bash mean on the first line of the build.sh
script?

12. What are two common names given to the special comment "#!"?

References

Pro Bash Programming: Scripting the GNU/Linux Shell, https://doc.lagout.org/programma-
tion/Shell%20/Pro%20Bash%20Programming.pdf

GNU Bash Website, https://www.gnu.org/software/bash/

GNU Bash Reference Manual, https://www.gnu.org/software/bash/manual/bash.pdf

https://doc.lagout.org/programmation/Shell%20/Pro%20Bash%20Programming.pdf
https://doc.lagout.org/programmation/Shell%20/Pro%20Bash%20Programming.pdf
https://www.gnu.org/software/bash/
https://www.gnu.org/software/bash/manual/bash.pdf

Chapter 11: A Bash Build Script Build.sh script Anatomy

Computer Scripting Techniques with Python © 2023 Pulp Free Press 351

0
0
0
0
1
0
1
1

Sed Manual, https://www.gnu.org/software/sed/manual/sed.html

Awk User’s Guide, https://www.gnu.org/software/gawk/manual/gawk.html

Notes

https://www.gnu.org/software/sed/manual/sed.html
https://www.gnu.org/software/gawk/manual/gawk.html

Build.sh script Anatomy Chapter 11: A Bash Build Script

352 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
0
1
1

	Ch-11: A Bash Build Script
	1.1 Assumptions
	1.2 Preliminaries
	1.2.1 Create Pipenv Virtual Environment
	1.2.2 Install pydocstyle and pytests Packages
	1.2.3 Make The build.sh Script Executable

	1.3 Run The Build.sh Script
	2 Build.sh script Anatomy
	2.1 The Shebang or Hash-Bang
	2.2 Comments
	2.3 Constants and Variables
	2.4 Processing Command-Line Arguments
	2.5 Translate Command-Line Arguments Into Actions
	2.5.1 The case Statement
	2.5.2 The if Statement

	2.6 Check Presence of Required Development Tools
	2.7 Displaying Help and Usage
	2.8 Parting Thoughts

