
Computer Scripting Techniques with Python © 2023 Pulp Free Press 119

0
0
0
0
0
1
0
0

00000100

Ch-4: Project Walkthrough

Learning Objectives
• State the purpose of the project approach strategy

• Apply the project approach strategy to implement a Python programming assignment

• State the purpose of the software development cycle

• Describe the activities performed in each phase of the development cycle

• Apply the software development cycle in sprints to implement a programming assignment

• State the actions performed by an analyst, architect, and programmer

• Translate a project specification into a software design that can be implemented in Python

• State the purpose and use of function and method stubbing

• State the purpose and use of a UML state transition diagram

• Explain data abstraction and the role it plays in the design of user-defined data types

• Execute Python programs from the command line

• State the importance of early code execution and testing during the development process

CHAPTER 4

Project Walkthrough

Chapter 4: Project Walkthrough

120 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
0

Introduction

This chapter presents a complete example of the analysis, design, and implementation of a
typical classroom programming project. The objective of this chapter is to demonstrate how to
approach a project and, with the help of the project-approach strategy and the software develop-
ment cycle, formulate and execute a successful project implementation plan.

I will confine the solution to two modules and use a class to represent the primary user-
defined data type. The resulting program source code will not be difficult to understand although
you will not be formally introduced to many of the topics discussed here until later in the book. I
use a class in the solution because although you can create stand-alone functions in Python, I
employ an object-oriented first approach to learning the language in my university-level courses.

You may be unfamiliar with many of the concepts discussed here. Don’t panic! I wrote this
material with the intention that you revisit it when necessary. As you start designing and writing
your own programs, examine these pages for clues on how to approach your particular problem.
Practice breeds confidence! In time, you will begin to make sense of all these confusing concepts.
After a few small victories, you will never again have to refer to this chapter.

What you will learn over the course of this book is that there are many possible approaches
and solutions to the project presented in this chapter. For example, a user interface can be as sim-
ple as console I/O with the print() and input() functions, or it could be a curses console inter-
face or a Tkinter graphical user interface (GUI). The application architecture can range from a
single module to a multilayer, multithreaded, client-server architecture.

Let’s begin by reviewing the project-approach strategy.

Classes? I’m
worried Jane!

Oh Jim, don’t
panic! It’ll be easy,

I promise.

https://docs.python.org/3/howto/curses.html
https://docs.python.org/3/library/tkinter.html

Chapter 4: Project Walkthrough Software Development Cycle

Computer Scripting Techniques with Python © 2023 Pulp Free Press 121

0
0
0
0
0
1
0
0

1 The Project-Approach Strategy Summarized

The project-approach strategy presented in chapter 2, page 73, is summarized in table 4-1.
Keep the project-approach strategy in mind as you formulate your solution. Remember, the pur-
pose of the project-approach strategy is to kick-start the creative process and sustain your creative
momentum. Feel free to tailor the project-approach strategy to suit your needs.

2 Software Development Cycle

When the time comes to start writing code, you will employ the software development cycle.
It’s good to have a broad, high-level design idea to get you started, but don’t make the mistake of
trying to design everything up front. Design until you can begin coding and then test some of your
ideas. The software development cycle is summarized in table 4-2.

Strategy Area Explanation

Application
Requirements

Determine and clarify exactly what purpose and features the finished project must
have. Clarify your understanding of the requirements with your instructor if the proj-
ect specification is not clear.
This results in a clear problem definition and a list of required project features.

Problem Domain Study the problem until you have a clear understanding of how to solve it. Optionally,
express your understanding of the solution by writing a pseudocode algorithm that de-
scribes, step-by-step, how you will solve the problem. You may need to do this several
times on large, complex projects.
This results in a high-level solution statement that can be translated into an ap-
plication design.

Language Features Make a list of all the language features you must understand and use to draft a compe-
tent design and later implement your design. As you study each language feature,
check it off your list. Doing so will give you a sense of progress and forward momen-
tum.
This results in a notional understanding of the language features required to ef-
fect a good design and solve the problem.

High-Level Design &
Implementation

Strategy

Sketch out a rough application design. A design is simply a statement, expressed
through words, pictures, or both, of how you plan to implement the problem solution
derived in the Problem Domain strategy area.
This results in a plan of attack!

Table 4-1: Project Approach Strategy

Step Explanation

Plan Design to the point where you can get started on the implementation. Do not attempt to design
everything up front. The idea here is to keep your design flexible and open to change.

Code Implement what you have designed.

Table 4-2: Software Development Cycle

Software Development Cycle Chapter 4: Project Walkthrough

122 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
0

Employ the software development cycle in an iterative fashion as depicted in figure 4-1.

Referring to figure 4-1 — By iterative I mean begin with the Plan step, followed by the Code
step, followed by the Test step, followed by the Integrate step, optionally followed by the Refac-
tor step. When you have finished a little piece of the project in this fashion, return to the Plan step
and repeat the process. Each complete Plan, Code, Test, Integrate, and Refactor sequence is
referred to as an iteration. As you iterate through the cycle, development progresses until you
converge on the final solution.

2.1 Relationship To Agile Software Development

The software development cycle summarized above is the foundational process for Agile
Software Development, whose original twelve principles can be viewed here: Principles Behind
The Agile Manifesto. Small teams of software engineers and supporting technical specialists orga-
nized in Scrum teams apply the software development cycle in sprints. A sprint is a measured
time period during which a scrum team will work collaboratively to complete a set amount of
work. A project is decomposed into Epics, Stories, and Tasks which form a backlog of work
required to complete the project, a designated milestone, or a release version. Epics, stories, and
tasks are recorded, documented, estimated, and tracked within a supporting tool like Atlassian’s
Jira. You don’t need to work in a team to apply the software development cycle in sprints. Orga-
nizing your development work into sprints is a great way to keep yourself organized, focused, and
on track.

Test Thoroughly test each section or module of source code. The idea here is to try to break it before
it has a chance to break your application. Even for small projects you will find yourself writing
short test-case programs on the side to test something you have just finished coding.

Integrate &
Regression Test

Add the tested piece of the application to the rest of the project and then test the whole project
to ensure it didn’t break existing functionality.

Refactor Take a comprehensive look at your overall application architecture and migrate general func-
tionality up into base, or even abstract, classes so the functionality can be utilized by more con-
crete derived classes. Consolidate repeated code where possible.

Step Explanation

Table 4-2: Software Development Cycle (Continued)

Figure 4-1: Iterative Software Development Cycle Deployment

https://agilemanifesto.org/principles.html
https://agilemanifesto.org/principles.html
https://www.atlassian.com/software/jira

Chapter 4: Project Walkthrough Project Specification

Computer Scripting Techniques with Python © 2023 Pulp Free Press 123

0
0
0
0
0
1
0
0

3 Project Specification

Keeping both the project-approach strategy and the software development cycle in mind, let’s
look now at a typical project specification given in table 4-3.

IT-566 Computer Scripting Techniques
Project 1
Robot Rat

Objectives:
Demonstrate your ability to utilize the following language features in a

Python program:
- Classes
- Methods
- Two-Dimensional Lists
- Instance Variables
- Local Method Variables
- Program Control-Flow Statements
- Console Input & Output

Task:
You are in command of a robot rat! Write a Python console application

that will allow you to control the rat’s movements around a 20 x 20 grid
floor.

The robot rat is equipped with a pen. The pen has two possible positions:
UP or DOWN. When the pen is in the UP position the robot rat can move around
the floor without leaving a mark. If the pen is in the DOWN position, the
robot rat leaves a mark on visited floor grid positions. Moving the robot
rat about the floor with the pen UP or DOWN at various locations results in
a pattern written upon the floor.

Hints:
- The robot rat can move in four directions: NORTH, SOUTH, EAST, and

WEST. Implement diagonal movement if you desire.
- Implement the floor as a two-dimensional list of boolean objects
- Use the built-in functions input() and print() to read text from and

write text to the console.

User Interface:
At minimum, display a text-based command menu with the following or simi-

lar command choices:

1. Pen Up
2. Pen Down
3. Turn Right
4. Turn Left
5. Move Forward
6. Print Floor
7. Exit

Table 4-3: Project Specification

Project Specification Chapter 4: Project Walkthrough

124 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
0

3.1 Analyzing The Project Specification

Now is a good time to step through the project-approach strategy and analyze the Robot Rat
project using each strategy area of concern as a guide starting with the application requirements.

3.1.1 Application Requirements

The Robot Rat project seems clear enough but omits a few details. It begins with a set of for-
mally stated project objectives. It then states the task you must perform, namely, to write a pro-
gram that lets you control a robot rat. But what, exactly, is a robot rat? That’s a fair question
whose answer requires a bit of abstract thinking. To clarify your understanding of the project’s
requirements, you decide to ask your instructor a few questions. Your first question is, “Does the
robot rat exist?”

If your instructor answers the question by saying, “Well, obviously, the robot rat does not
really exist!”, he would be insulting you. Why? Because if you are wondering just what a robot rat
is, then you are having difficulty abstracting the concept of a robot rat. He would be doing you a
better service by saying, “The robot rat exists, but only as a collection of attributes that provide a
limited description of the robot rat.” He should also add that by writing a program to control the
robot rat’s movements around the floor, you are actually modeling the concept of a robot rat. And

When menu choice 6 is selected to print the floor, the result might look
something like this, assuming you chose a hyphen '-' to represent a marked
area of the floor and a zero '0' to represent an unmarked area. You may use
other pattern characters if desired.

-----000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000

In this example, the robot rat moved from the upper-left corner of the
floor five spaced to the EAST with the pen DOWN.

IT-566 Computer Scripting Techniques
Project 1
Robot Rat

Table 4-3: Project Specification (Continued)

Chapter 4: Project Walkthrough Project Specification

Computer Scripting Techniques with Python © 2023 Pulp Free Press 125

0
0
0
0
0
1
0
0

since a model of something usually leaves out some level of detail or contains some simplifying
assumptions, he should also tell you that the robot rat does not have legs, fur, or a cute little nose.

Another valid requirements question might focus on exactly what is meant by the term con-
sole application. That too is a good question. A console application is a program that interacts
with the terminal using the Python built-in print() and input() functions, and optionally can
utilize command-line parameters. A console program does not usually have a graphical user inter-
face (GUI), although nothing stops you from writing one that does.

What about error checking? Again, good question. In the real world, making sure an applica-
tion behaves well under extreme user conditions and recovers gracefully in the event of an error
consumes a good amount of programming effort. One area in particular that requires extra mea-
sures to ensure everything goes well is array or list processing. As the robot rat moves around the
floor, you must take steps to prevent the program from letting it go beyond the bounds of the floor
array. You need to use enough error checking to avoid major catastrophes.

Something else to consider is how to process menu commands. Since the project only calls for
simple console input and output, one approach you could take is to treat all input as a text string.
If you need to convert a text string into another data type, you can use the Python built-in func-
tions like int() or float(), otherwise, you should concentrate on learning how to use the funda-
mental language features listed in the project’s objectives section.

To summarize the requirements clarified thus far:
• Write a program that models the concept of a robot rat and its movement upon a
floor.

• Think of the robot rat as an abstraction represented by a collection of attributes. (I
discuss these attributes in greater detail in the problem domain section that fol-
lows.)

• Represent the floor as a two-dimensional array of boolean objects.
• Use just enough error checking to avoid catastrophe and focus on staying within
the floor boundaries.

• Read user command input as a text string.
• Convert string input into other types as required.
• Put all program functionality into one user-defined class. This class will be a
Python console application.

When you are sure you fully understand the project specification, you can proceed to the prob-
lem domain strategy area.

3.1.2 Problem Domain

In this strategy area, your objective is to learn as much as possible about what a robot rat is
and how it works in order to gain insight into how to proceed with the project design. A good
technique to help jump-start your creativity is to read through the project specification looking for
relevant nouns and verbs or verb phrases. This is referred to as Noun-Verb Analysis.

A first pass at this activity yields two lists. The list of nouns suggests possible application
objects, data types, and attributes. Nouns also suggest possible names for static (class-wide) and
instance fields (constants and/or variables) and local method variables. The list of verbs suggests
possible object interactions and method names.

Project Specification Chapter 4: Project Walkthrough

126 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
0

Noun - Verb Analysis

A first pass at reviewing the project specification yields the list of nouns and verbs shown in
table 4-4.

This list of nouns and verbs is a good starting point. Now that you have it, what do you do
with it? Good question. As I mentioned previously, each noun is a possible candidate for either a
variable, a constant, or some other data type, data structure, object, or attribute within the applica-
tion. A few of the nouns might not be used. Others have a direct relationship to a particular appli-
cation feature. Some nouns look like they could be very useful but may not easily convert or map
to any application feature. Also, the noun list may not be complete. You may discover additional
application objects and object interactions as project analysis moves forward.

The verb list for this project example derives mostly from the suggested command menu.
Verbs normally map directly to potential function or method names. You will need to create these
methods as you write your program. Each method you identify will belong to a particular class,
and may utilize some or all of the other objects, variables, constants, and data structures identified
with the help of the noun list.

The noun list gleaned so far suggests that the Robot Rat project needs further analysis both to
expand your understanding of the project’s requirements and to reveal additional attribute candi-
dates. How do you proceed? I recommend taking a closer look at several nouns that are currently
on the list, starting with robot rat. Just what is a robot rat from the attribute perspective? Since
pictures are always helpful, I suggest drawing a few in your engineer’s notebook. (See “The Engi-
neer’s Notebook” on page 86) Figure 4-2 offers one for your consideration.

Nouns Verbs

robot rat
floor
pen
pen position (up, down)
mark
program
pattern
direction (north, south, east, west)
menu

move
set pen up
set pen down
mark
turn right
turn left
print floor
display menu
exit

Table 4-4: Robot Rat Project Nouns and Verbs

Figure 4-2: Robot Rat Viewed as a Collection of Attributes

Chapter 4: Project Walkthrough Project Specification

Computer Scripting Techniques with Python © 2023 Pulp Free Press 127

0
0
0
0
0
1
0
0

Referring to figure 4-2 — This picture suggests that a robot rat, as defined by the current noun
list, consists of a pen that has two possible positions, and the rat’s direction. As described in the
project specification and illustrated in figure 4-2, the pen can be either UP or DOWN. Regarding
the robot rat’s direction, it can face one of four ways: NORTH, SOUTH, EAST, or WEST. Can
more attributes be derived? Perhaps another picture will yield more information. I recommend
drawing a picture of the floor and run through several robot rat movement scenarios as illustrated
in figure 4-3.

Figure 4-3 offers a lot of great information about the workings of a robot rat. The floor is rep-
resented by a collection of cells arranged by rows and columns. As the robot rat moves about the
floor, its position can be determined by keeping track of its current row and column. These two
nouns are good candidates to add to the list of relevant nouns and to the set of attributes that can
be used to describe a robot rat. Before the robot rat can move, its current position on the floor
must be determined. Upon completion of each robot rat movement, its current position must be
updated. Armed with this information, you should now have a better understanding of what attri-
butes are required to represent a robot rat, as figure 4-4 illustrates.

This seems to be a sufficient analysis of the problem at this point. You can return to this strat-
egy area at any time should further analysis be required. It is now time to take a look at what lan-
guage features you must understand to implement the solution.

Figure 4-3: Robot Rat Floor Sketch

Figure 4-4: Complete Robot Rat Attributes

Project Specification Chapter 4: Project Walkthrough

128 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
0

3.1.3 Language Features

The purpose of the language features strategy area is two-fold: First, to derive a good design
to a programming problem you must know what features the programming language supports and
how it provides them. Second, you may be forced by a particular programming project to use lan-
guage features you’ve never used before. It can be daunting to have lots of requirements thrown at
you in one project. The complexities associated with learning the language, learning how to create
projects, learning an integrated development environment (IDE), and learning the process of solv-
ing a problem with a computer can induce panic. Use the language features strategy area to over-
come this problem and to maintain a sense of forward momentum.

Apply this strategy area by making a list of all the language features you need to study before
starting your design and writing code. As you study each language feature, mark it off your list.
Take notes about each language feature and how it can be applied to your particular problem.

Table 4-5 presents a sample check-off list for the language features used in the Robot Rat proj-
ect.

Check Feature Considerations

Python Applications How do you write a Python application? What is a module? How do you
run a Python application from the command line?

Built-in Data Types What are the Python built-in data types?

Built-in Functions What are the Python built-in functions?

Arrays/Lists What is an array? What is a list? How do you declare and initialize lists?

Two-Dimensional
Arrays/Lists

What is a two-dimensional array? How do you declare and initialize a
two-dimensional array? How do you access each element in a two-dimen-
sional array?

Classes and Objects How do you declare and implement a class? What’s the structure of a
class. What’s the purpose of a class? What’s the difference between a
class definition vs. an object instance? How do you instantiate a class ob-
ject? What’s the purpose of the __init__() method?

Instance Variables What are instance variables? How do you declare and use an instance
variable?

Class Variables What are class variables? How do you declare and use a class variable?

Methods What is a method? What are they good for? How do you declare and call
a method? What are method parameters? How do you pass arguments to
methods? How do you return values from methods? What’s the difference
between a method vs. a function?

Local variables What is a local variable? How does their use affect class or instance vari-
ables? How long does a local variable exist? What is the scope of a local
variable?

Special __init__()
method

What’s the purpose of the __init__() method. When is it called? How
do you pass arguments to it?

Table 4-5: Language Feature Study Check-Off List For Robot Rat Project

Chapter 4: Project Walkthrough Project Specification

Computer Scripting Techniques with Python © 2023 Pulp Free Press 129

0
0
0
0
0
1
0
0

Armed with your list of language features, you can now study each one, marking it off as you
go. When you discover a good code example that shows you how to use a particular language fea-
ture, copy it down or print it out and save it in your engineer’s notebook for future reference.

Learning to program is a lot like learning to play a musical instrument. It takes observation
and practice. You must put your trust in the masters and mimic their style. You may not at first
fully understand why a particular piece of code works the way it does, or why they wrote it the
way they did. But copy their style until you start to understand the underlying principles. Doing
this builds confidence — slowly but surely. Soon you will have the skills required to set out on
your own and write code with no help at all. In time, your programming skills will surpass those
of your teachers.

After you have compiled and studied your list of language features, you should have a sense
of what you can do with each feature and how to start the design process. More importantly, you
will know where to refer when you need to study a particular language feature in more depth.
However, by no means will you have mastered the use of these features. So don’t feel discouraged
if, having arrived at this point, you still feel a bit overwhelmed by all that you must know. I must
emphasize here that to master the art of programming takes practice, practice, practice!

Once you have studied each required language feature, you are ready to move on to the design
strategy area of the project-approach strategy.

3.1.4 Design

You must derive a plan of attack before you can solve the robot rat problem! Your plan will
consist of two essential elements: a high-level software architecture diagram and an implementa-
tion approach.

3.1.4.1 High-Level Software Architecture Diagram

A high-level software-architecture diagram is a picture of both the software components
needed to implement the solution and their relationship to each other. Creating the high-level soft-
ware-architecture diagram for the Robot Rat project is easy, as the application will contain only
one class. On the other hand, complex projects usually require many different classes, and each of
these classes may interact with the others in some way. For these types of projects, application
architecture diagrams play a key role in helping software engineers understand how the applica-
tion works.

Control-Flow
Statements

What is a control-flow statement? How do you use if, while, for, and
match statements in a program? What’s the difference between for and
while statements? What’s the difference between nested if/elif/else
statements and match statements?

Console I/O What is console input and output? How do you write text to the console?
How do you read text from the console and use it in your program? What
built-in functions can you use to write text to the console and read text
from the console?

Check Feature Considerations

Table 4-5: Language Feature Study Check-Off List For Robot Rat Project (Continued)

Project Specification Chapter 4: Project Walkthrough

130 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
0

The Unified Modeling Language (UML) is used industry-wide to model software architec-
tures. The UML class diagram for the RobotRatApp class at this early stage of your project’s
design will look similar to figure 4-5.

Referring to figure 4-5 — The RobotRatApp class extends (inherits) the functionality pro-
vided by the Python object class. This is indicated by the hollow-pointed arrow pointing from the
RobotRatApp class to object. In Python 3, all user-defined classes implicitly extend object so you
don’t have to do anything special to achieve this functionality. The RobotRatApp class will have
attributes (class and instance variables) and methods. The main.py module will provide the
main() function and serve as the point of entry for the application.

3.1.4.2 Implementation Approach

Before you begin coding you must have some idea of how you are going to translate the
design into a finished project. Essentially you must answer the following question: “Where do I
start?” Getting started is easily 90% percent of the battle!

When formulating an implementation approach, you can proceed macro-to-micro, micro-to-
macro, or a combination of both. I realize this sounds like unorthodox terminology, but bear with
me.

If you use the macro-to-micro approach, you build and test an application framework to which
you incrementally add functionality that ultimately results in a finished project. If you use the
micro-to-macro approach, you build and test small pieces of functionality first and then, bit-by-
bit, combine them into a finished project.

More often than not, you will use a combination of these approaches. Object-oriented design
begs for macro-to-micro as a guiding approach. But both approaches play well with each other, as
you will soon see.

There will be many unknowns when you start your design. For example, you could attempt to
specify all the methods required for the RobotRatApp class up front, but as you progress through
development, you will surely see the need for a function or method you didn’t initially envision.

The following general steps outline a viable implementation approach to the Robot Rat proj-
ect:

Figure 4-5: RobotRatApp UML Class Diagram

Chapter 4: Project Walkthrough Coding The Robot Rat Application

Computer Scripting Techniques with Python © 2023 Pulp Free Press 131

0
0
0
0
0
1
0
0

• Proceed from macro-to-micro by first creating and testing the RobotRatApp
application class, devoid of any real functionality.

• Add and test a menu display capability.
• Add and test a menu-command processing framework by creating several empty
methods that will serve as placeholders for future functionality. These methods
are known as method stubs. (Method stubbing is a great programming trick!)

• Once you have tested the menu-command processing framework, you must
implement each menu item’s functionality. This means that you must implement
and test the stub methods created in the previous step. The Robot Rat project is
complete when all required functionality has been implemented and successfully
tested.

• Develop the project iteratively in sprints. This means that you will repeatedly
execute the Plan-Code-Test-Integrate-Refactor cycle many times on small pieces
of the project until the project is complete.

Now that you have an overall implementation strategy, you can proceed with development.
The following sections walk you step-by-step through the iterative application of the software
development cycle.

4 Coding The Robot Rat Application

It’s time now to begin coding the Robot Rat application. This section dives deeper into the
thought process and coding techniques you can apply to implement a project of this nature. Note
that unless you’ve worked through the project-approach strategy and have a good idea of where to
begin you shouldn’t be here. Have you ever sat down to write an essay for a class assignment only
to stare hopelessly at the blank piece of paper laying before you with not one idea of what to write
or how to begin. It’s the same way for software development and the physical process of sitting at
the keyboard and writing the code.

I’ll proceed by applying the software development cycle in an iterative fashion called sprints.
The first sprint, formally titled Sprint 0 (Zero), is usually included at the start of a development
project to provide a period of time for a development team, or a team of one, to prepare for subse-
quent development activities. Shall we begin?

4.1 Planning — Sprint 0

Before writing one line of code you’ll need to take care of a few administrative tasks. These
could be just about anything that prepares a team for the work ahead, but here I’ll focus on creat-
ing the project folder and project repository. I’ll be using Git for source code configuration man-
agement and GitHub for the remote repository, however, I will not go into detail here about how
to use Git or GitHub. For detailed coverage please refer to Part II: Chapter 8: Configuration
Management with Git & GitHub.

Pro Tip: Use Sprint 0 to identify and execute tasks required to ensure project success

Coding The Robot Rat Application Chapter 4: Project Walkthrough

132 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
0

4.1.1 Activities

A few important or even critical activities need to be completed before writing one line of
code for the Robot Rat application. You should do the ones discussed here for all the program-
ming projects you work on. The exact activities included in a Sprint 0 in the real world vary
according to company, project, and even personalities working on the team. For Robot Rat, I’m
primarily concerned with where the source code is stored, how the project folder is organized, and
setting up the repository. Table 4-6 lists the task items I’ll work during this sprint.

Referring to table 4-6 — As I said earlier, you may not know one thing about Git or GitHub at
this point, and that is perfectly OK. I’m not going into details here, but you’ll find it helpful to
observe the thought process and motions from the 10,000 foot level.

4.1.1.1 Create Repository in GitHub

If you don’t already have a repository for the project create one in GitHub. I have a repository
I use for this book so I’ll be using it to store the code for the Robot Rat project. Here’s the link to
the repository: https://github.com/pulpfreepress/cst_with_python_1st_ed

So, you can proceed a couple ways here. You can create a unique repository for each program-
ming project you work on, or, you can create a catch-all repository to which you add your projects
to as you create and work on them. The former works well for big projects and the later works
well for students who have multiple projects related to a course. It also works well for books with
source code located in different chapters and is the approach I use here.

4.1.1.2 Identify Local Projects Directory

I’ve recommended since chapter 1 you should store your programming projects in a dedicated
subdirectory off your home directory. I locate all my programming projects in a subdirectory
named dev (~/dev).

Check Task Action

Create Repository in GitHub Create a GitHub repository for the project.

Create Local Projects Directory Create a local projects directory. (~/dev or ~/projects)

Clone the Repository Clone the repository into the projects folder.

Create Robot Rat Project Directory Navigate to the cloned repository directory and create
the Robot Rat project directory.

Add README.md File Add a README.md file with project details

Add .gitignore File Add a .gitignore file which indicates which project files
to ignore

Verify Repository Operations Add, commit, and push changes to the local repository
up to GitHub to test repository operations.

Table 4-6: Sprint 0 Activities

https://github.com/pulpfreepress/cst_with_python_1st_ed

Chapter 4: Project Walkthrough Coding The Robot Rat Application

Computer Scripting Techniques with Python © 2023 Pulp Free Press 133

0
0
0
0
0
1
0
0

4.1.1.3 Clone Repository

When you clone a GitHub repository, the name of the repository will be the name of the folder
created in your projects folder. See figure 4-6.

Referring to figure 4-6 — I cloned the repository into my ~/dev directory using SSH (Secure
Shell). (See Chapter 8: Configuration Management with Git & GitHub). This creates a folder in
the ~/dev directory with the same name as the repository (cst_with_python_1st_ed). This is
referred to as the local repository folder and notice when I change directory into that folder the
prompt will change to reflect the repository branch name as shown in figure 4-7.

Referring to figure 4-7 — The (main) indicates the current repository branch. This is the local
repository. Now it’s time to create the Robot Rat project folder.

Figure 4-6: Cloning Repository Into Development Projects Folder

Figure 4-7: Repository Branch Displayed

Coding The Robot Rat Application Chapter 4: Project Walkthrough

134 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
0

4.1.1.4 Create Robot Rat Project Directory

Notice in figure 4-7 I have organized the code for this book into chapter folders. I’ll create a
new directory named chapter04 and in there I’ll create a subdirectory named robot_rat as shown
in figure 4-8.

Referring to figure 4-8 — The full path to the Robot Rat project folder on my machine is ~/
dev/cst_with_python_1st_ed/chapter04/robot_rat. Your repository structure may be completely
different or similar with slight variations. Either way, you should now navigate to the robot_rat
project folder and add a few important artifacts as discussed below.

4.1.1.5 Add README.md File

Add a README.md file. The purpose of a README.md file is to provide documentation
about your project. Topics you might want to add include notes on how to configure and run the
project, any preliminary actions users must take before they can run the program like what
required packages they may need install, and so on.

A README.md file contains Markdown code. You can learn more about Markdown here:
https://www.markdownguide.org/cheat-sheet/ It’s easy to figure out. Start by adding a project title
and short description. You can always add more information to your README.md as develop-
ment progresses.

Figure 4-9 shows the raw Markdown code in the left editor panel and the rendered Markdown
in the right panel. The rendered Markdown panel shows what your README.md file will look
like when displayed on GitHub.

Referring to figure 4-9 — Refer to the Markdown cheat-sheet to decipher the formatting used
in the left-hand panel. Although my primary repository has a README.md file at the root level, I
add one to sub-projects when necessary to add clarification or specific instructions. I’ve often
referred to my README.md files to refresh my memory on a particular project. Documentation
on school projects may seem silly but your instructor will be impressed.

Figure 4-8: Creating Robot Rat Project Folder

https://www.markdownguide.org/cheat-sheet/

Chapter 4: Project Walkthrough Coding The Robot Rat Application

Computer Scripting Techniques with Python © 2023 Pulp Free Press 135

0
0
0
0
0
1
0
0

4.1.1.6 Add .gitignore File

Next, create a .gitignore file. The .gitignore file is a list of files and directories to ignore when
committing project artifacts to the local repository. You can find .gitignore templates, or pre-pop-
ulated .gitignore files, tailored to specific project types. When you create a repository in GitHub
you have the chance to select a .gitignore template to use. Here’s a link to a Python project
.gitignore template on GitHub: https://github.com/github/gitignore/blob/main/Python.gitignore

Like README.md files, .gitignore files can sit at the root of a repository with additional
.gitignore files in sub-directories as required. That’s the approach I’m taking here. To the template
file found at the other end of that link I pasted above, I’m going to add a common macOS file to
ignore as shown in figure 4-10.

Figure 4-9: Adding Markdown-Formatted Content to README.md

Figure 4-10: Adding .gitignore File to Project

https://github.com/github/gitignore/blob/main/Python.gitignore

Coding The Robot Rat Application Chapter 4: Project Walkthrough

136 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
0

Referring to figure 4-10 — I will run this project on multiple platforms including Windows,
Linux, and macOS. On macOS, browsing to a directory with a Finder window creates a hidden
file named .DS_Store. I always add an entry in my .gitignore files to ignore .DS_Store files.

OK, it’s time to verify repository operations.

4.1.1.7 Verify Repository Operations

Now that you have your project directory and have added the README.md and .gitignore
files, you can use the git command to add and commit them to the local repository, and then push
them to the remote repository on GitHub. Figure 4-11 shows you the console session for this
series of git operations.

Referring to figure 4-11 — I personally like to check the status of the local repository by run-
ning the git status command. I then do a git add . to add everything that is new or modified,
followed by a git commit -m "message..." where "message..." is a comment on the com-
mit. Finally, I push the local changes to the remote repository with git push.

Figure 4-11: Git Operations add and commit with a push to the Remote Repository

Chapter 4: Project Walkthrough Coding The Robot Rat Application

Computer Scripting Techniques with Python © 2023 Pulp Free Press 137

0
0
0
0
0
1
0
0

To see the remote repository updates, navigate to your GitHub repository. Figure 4-12 shows
the robot_rat project repository on GitHub.

Referring to figure 4-12 — Notice how nice the README.md file looks. Thoughtful docu-
mentation makes even mundane projects look more professional. As the Robot Rat project pro-
gresses through its development sprints, I will create new subdirectories for each sprint so you can
see the evolution of the project. With Sprint 0 activities complete it’s time to start the first devel-
opment sprint.

Pro Tip: Use Sprint 0 to execute tasks that set subsequent sprints up for success

Figure 4-12: GitHub Repository with robot_rat Project Folder Added

Coding The Robot Rat Application Chapter 4: Project Walkthrough

138 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
0

4.2 Development — Sprint 1

With Sprint 0 complete it’s time to start coding. This is where the software development cycle
kicks in. While Sprint 0 is considered a planning sprint of sorts, at the heart of the Agile philoso-
phy is the notion of not planning too much in advance. Each development sprint consists of a
planning phase. That’s where I’ll start. Think of development as getting a flywheel going. You
seek momentum and you get into a rhythm when things start humming along.

4.2.1 Plan

The focus of this sprint will be to create an application architecture which will support further
Robot Rat development. Using figure 4-5 as a reference I’ll be creating a two-module application
architecture with a robotrat_app.py module and a main.py module. The robotrat_app.py module
will contain the RobotRatApp class definition and the main.py module will serve as the point of
entry for the application. Table 4-7 lists the design considerations and decisions for what needs to
be done.

Referring to table 4-7 — This is a great start. It may not seem like a lot but it lays the code
foundation that will facilitate further application development.

The first thing I’ll do is the first activity on the list — create a new subdirectory in the
robot_app project folder named src, which is where I will store all project source code files.
You’ll want to do this to avoid cluttering the project’s root directory. Now, let’s start coding.

4.2.2 Code

I’ll start with the robotrat_app.py file shown in example 4.1.
4.1 robotrat_app.py (Sprint 1)

1 """Implements the Robot Rat Application."""
2
3 class RobotRatApp():
4 """A Remote-Controlled Robot Rat Application."""
5
6 def __init__(self):
7 print('I am Robot Rat! I am alive!')

Referring to example 4.1. The goal of this code is to just define the RobotRatApp class and
see some type of indication when an object is instantiated and initialized. The __init__()
method is a special method called after an object is instantiated. Its purpose is to initialize the

Check Design Consideration Design Decision

Create a src directory to store source
code files.

All Python source code files will be located in the src
subdirectory.

Create RobotRatApp class The objective here is to define the class so that an object
can be instantiated. It doesn’t need to have any real
functionality. The class will be defined in the
robotrat_app.py module.

Define a main() method Locate the main() method in the main.py module

Table 4-7: Sprint 1 Design Considerations

Chapter 4: Project Walkthrough Coding The Robot Rat Application

Computer Scripting Techniques with Python © 2023 Pulp Free Press 139

0
0
0
0
0
1
0
0

object. Here it’s only printing a message to the console. What, exactly, goes here you may not
fully understand at this point of development. By that I mean that when you first start coding, you
may not have a full grasp of what needs to be initialized. Those issues will come into better focus
as development progresses.

OK, now it’s time to create the main.py module, the code for which is given in example 4.2.
4.2 main.py

1 """Serves as the point of entry to the Robot Rat Application."""
2
3 from robotrat_app import RobotRatApp
4
5 def main():
6 robot_rat_app = RobotRatApp()
7
8
9 if __name__ == '__main__':
10 main()

Referring to example 4.2 — The main.py module is the file that will be executed by the
Python interpreter to run the Robot Rat application. On line 3 it imports the RobotRatApp class
from the robotrat_app module. Importing makes namespaces available to a program by loading
and executing the imported module code. The main() method is defined on line 5. On line 6 an
instance of the RobotRatApp class is created by invoking or "calling" an instantiation operation
with a function call "()" represented by a pair of parentheses. The instantiation call returns an
object which is an instance of the RobotRatApp class. The main() method is called on line 10
when the main.py module is run directly by the Python interpreter.

Coding is complete. If you’re following along, save these two files in the project src directory
and proceed to the Test phase.

4.2.3 Test

Testing at this point is simple — just run the main.py module with the Python interpreter.
Remember to use the appropriate Python interpreter command that corresponds to your operating
system. It will be either python (Windows) or python3 (Linux/macOS). Here’s the command I
run on macOS:
python3 src/main.py

Run this command from the Robot Rat root project directory. The results of this command are
shown in figure 4-13.

Referring to figure 4-13 — Everything is working as it should be. Time to move on.
Figure 4-13: Results of Running main.py Module Sprint 1

Coding The Robot Rat Application Chapter 4: Project Walkthrough

140 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
0

4.2.4 Integrate

There’s really nothing to integrate so we can largely skip this step of the development cycle at
this stage.

4.2.5 Add, Commit, And Push Changes To Repository

This does not necessarily have to wait until the end of the sprint. In the real world, a sprint
may last several weeks or more, and you may make several commits during that time. However,
at the end of a sprint you’ll want to commit any remaining additions and modifications to the code
base and push them up to the remote repository. I use the following series of commands:
git status # List what’s new and modified in the working area
git add . # Add all new and modified artifacts to the staging area
git commit -m "Completed Sprint 1." # Record the changes to the repository
git push # Update remote (GitHub) repository

Going forward, I will omit this section. However, at minimum, you’ll want to commit changes
at the end of each development sprint. Another good time to commit changes to your repository is
right before you start to make a sweeping change to existing code. An example of this would be
right before refactoring. If something goes wrong, you can back out those changes and recover to
a known good state.

4.2.6 Refactor

There’s nothing to refactor so we can skip this step for this sprint.

4.2.7 Parting Thoughts

This marks the end of Sprint 1. While it may not seem like a lot was accomplished, that notion
couldn’t be farther from the truth. Novices often, well, more often than not, make the mistake of
trying to do too much coding before they try to run their project. Then they get depressed.

What normally happens, especially to those new to programming or new to Python, is they
make mistakes when entering the code. Learning how to physically enter code using a keyboard
takes an immense amount of focus, concentration, and hand-eye coordination. Python is case-sen-
sitive, so you have to pay attention to what you’re typing and be exact. Getting good at paying
attention and being exact is a large part of learning to code. OK, let’s move on to the next sprint.

4.3 Development — Sprint 2

At this point, I have laid a good code foundation upon which to start adding functionality that
will bring the Robot Rat project to life. A lot of what a Robot Rat can and must do is pretty much
spelled out in the command menu. That seems like the next logical thing to work on.

4.3.1 Plan

The project specification says the Robot Rat application must display a menu with a list of
command choices from which a user can select. Referring to the noun/verb analysis table, there’s
an entry in the Verbs column for "display menu". Recall that nouns represent potential entities

Chapter 4: Project Walkthrough Coding The Robot Rat Application

Computer Scripting Techniques with Python © 2023 Pulp Free Press 141

0
0
0
0
0
1
0
0

within a program while verbs represent potential actions an application must perform. Verbs also
map nicely to functions or methods.

Now, get up from your desk and take a walk. Walking provides a great opportunity to think.
Issues to contemplate include the weather, how nice the sun feels upon your face, the sound of the
leaves rustling in the trees, or the sound of traffic, beeping, honking, and how to render the menu.
Since the project specification requires console I/O you’ll use the built-in print() function to
render menu items. But you’ll need to display the menu repeatedly, and although you may not
know how to do that just yet, it makes sense to put the menu rendering code in a dedicated method
named display_menu(). Table 4-8 lists the design considerations for sprint 2.

This looks like plenty to do for sprint 2. Let’s get coding.

4.3.2 Code

I’ll add the display_menu() method definition to the existing RobotRatApp class. Example
4.3 gives the code listing.

4.3 robotrat_app.py (Sprint 2)
1 """Implements the Robot Rat Application."""
2
3 class RobotRatApp():
4 """A Remote-Controlled Robot Rat Application."""
5
6 def __init__(self):
7 print('I am Robot Rat! I am alive!')
8
9 def display_menu(self):
10 """Prints menu items to the console."""
11 print('\n\t\tRobot Rat Control Menu')
12 print('\t1. Pen Up')
13 print('\t2. Pen Down')
14 print('\t3. Turn Right')
15 print('\t4. Turn Left')
16 print('\t5. Move Forward')
17 print('\t6. Print Floor')
18 print('\t7. Exit')
19

Referring to example 4.3 — The display_menu() method definition begins on line 9. It
begins with a docstring on line 10 followed by a series of built-in print() function calls that print
various strings to the console related to the menu. Notice all the strings are single-quoted as that is
the style I have adopted. Notice also the strings contain special escaped characters '\t', '\n' or
both. The '\t' is the escaped tab character. I use them to position the menu a little to the right in
the console, as you’ll see when I run the program. — OK, to see the menu, I’ll need to call the
display_menu() method somewhere. I’ll do that in the main.py module listed in example 4.4.

Check Design Consideration Design Decision

Display command menu Use the built-in print() function to print each menu
item to the console. Consolidate the menu rendering
code in a method named display_menu(),

Table 4-8: Sprint 2 Design Considerations

Coding The Robot Rat Application Chapter 4: Project Walkthrough

142 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
0

4.4 main.py (Sprint 2)
1 """Serves as the point of entry to the Robot Rat Application."""
2
3 from robotrat_app import RobotRatApp
4
5 def main():
6 robot_rat_app = RobotRatApp()
7 robot_rat_app.display_menu()
8
9
10 if __name__ == '__main__':
11 main()
12

Referring to example 4.4 — On line 7, I added a call to the robot_rat_app.dis-
play_menu() method. A few things to note here. First, on line 6, I’m creating an instance of the
RobotRatApp class whose location in memory is assigned to the variable robot_rat_app. This
variable now points to an object of type RobotRatApp. On line 7, I apply the dot '.' operator to
call a method defined by that type, namely, in this case, the display_menu() method. It is the call
operator, a pair of parentheses, '()', that actually invokes the method call. — OK, time to test
this code.

4.3.3 Test

Testing in this case involves nothing more than running the code. Once again, since I’m pro-
gramming on macOS, I open a terminal and run the main.py module with the Python interpreter
like so: python3 src/main.py Figure 4-14.

Referring to figure 4-14 — You can see the effects of the tab characters. Placing character
stream output in the console is tedious so this menu doesn’t need to be perfect. I may adjust the
menu in another sprint, but for now it looks fine. The only real issue I have at this point is the
menu displays and then the program exists. How does a user make a menu selection and have the

Figure 4-14: Testing Robot Rat Control Menu — Sprint 2

Chapter 4: Project Walkthrough Coding The Robot Rat Application

Computer Scripting Techniques with Python © 2023 Pulp Free Press 143

0
0
0
0
0
1
0
0

program respond? Good question, and that sounds like something interesting to work on in the
next sprint.

4.3.4 Integrate

Nothing to integrate, but I can remove the message from the __init__() method since I can
now see the menu when I run the program. The last thing I’ll do before moving to Sprint 3 is push
all my changes to the remote repository.

4.4 Development — Sprint 3

At this point the menu displays once and the program exits. A good set of objectives for this
sprint will be to continuously display the menu until the user exits the program and handle, in
some way, user menu selections, if not completely, then in some limited fashion.

There’s a technique programmers use called stubbing to implement a feature without having
to fully develop application code. For example, it would be nice to work on menu selection pro-
cessing so that when a user selects, say, the Pen Up command, we can test the menu processing
feature without actually implementing Robot Rat’s Pen Up capability. You’ll find stubbing to be a
valuable tool to add to your programmer’s tool belt.

4.4.1 Plan

Table 4-9 lists the design considerations for this sprint.

Referring to table 4-9 — This looks like plenty to do for this sprint. Let’s write some code.

4.4.2 Code - First Iteration

The best advice I can offer here is not to try to code everything before doing some testing to
see how things are going. To show you what I mean, I’ll post the examples in stages to show you
how far I’d go before stopping and testing to make sure what I am coding actually works.

I’ll start by creating a method named process_menu_choice() and write enough code to test
one or two commands before proceeding farther. What this means is that within this sprint there

Check Design Consideration Design Decision

Menu Item Processing When a user selects a menu item the application needs
to read the user’s command-line input and execute the
indicated command. This can be handled in a separate
method named process_menu_choice().

Menu Display and Processing Loop Upon completion of a Robot Rat menu command, the
application should redisplay the menu and await user
input.

Menu Command Method Stubs Stub out the methods for each menu command. Display
a message to the screen to indicate when a method has
been called.

Table 4-9: Sprint 3 Design Considerations

Coding The Robot Rat Application Chapter 4: Project Walkthrough

144 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
0

will be several Plan, Code, & Test sub-cycles. While table 4-9 above lists the overall sprint objec-
tives, each design consideration may entail deeper thought and additional planning to fully imple-
ment.

To process a menu choice a user must enter the command number at the console. The program
should prompt the user for input. The built-in input() function is perfect for the job. When the
user enters a menu command the application must then try to figure out if what the user typed is a
valid menu command and if not it should display a warning message and let the user try again.
Note that if you don’t know how to do these things you can always create a recipe for what needs
to be done using pseudocode. You could write these steps in your engineer’s notebook or put them
in your program as comments.

Example 4.5 gives the code for my first stab at the process_menu_choice() method.
4.5 robotrat_app.py (Sprint 3 v1)

1 """Implements the Robot Rat Application."""
2
3 class RobotRatApp():
4 """A Remote-Controlled Robot Rat Application."""
5
6 def __init__(self):
7 print('I am Robot Rat! I am alive!')
8
9 def display_menu(self):
10 """Prints menu items to the console."""
11 print('\n\t\tRobot Rat Control Menu\n')
12 print('\t1. Pen Up')
13 print('\t2. Pen Down')
14 print('\t3. Turn Right')
15 print('\t4. Turn Left')
16 print('\t5. Move Forward')
17 print('\t6. Print Floor')
18 print('\t7. Exit')
19
20 def process_menu_choice(self):
21 # Prompt user for input
22 # Assign input string to variable
23 user_input = input('\n\tEnter Command Number: ')
24 # Use first character of input as menu choice
25 menu_choice = user_input[0]
26 if __debug__:
27 print(f'You entered command number: {menu_choice}')
28 # Is menu_choice valid command?
29 # YES - Execute command
30 # NO - Display error message and try again
31

Referring to example 4.5 — The process_menu_choice() method definition starts on line
20. The comments represent the algorithm or steps necessary to fully implement the method
although some details about how to "try again" are still fuzzy. So, at this stage of development, all
the method does is display a prompt and assign the console input to a variable named user_input
on line 23. Then, on line 25, the first character of the user_input string (user_input[0]) is
assigned to the variable menu_choice. Then, on line 26, if the Python built-in constant __de-
bug__ is true, then the message on line 27 prints to the console. This may not seem like a lot, but
it’s worth testing to see if everything works up to this point.

To test the process_menu_choice() method I’ll need to call it from the main.py module as is
shown in example 4.6.

Chapter 4: Project Walkthrough Coding The Robot Rat Application

Computer Scripting Techniques with Python © 2023 Pulp Free Press 145

0
0
0
0
0
1
0
0

4.6 main.py (Sprint 3 v1)
1 """Serves as the point of entry to the Robot Rat Application."""
2
3 from robotrat_app import RobotRatApp
4
5 def main():
6 robot_rat_app = RobotRatApp()
7 robot_rat_app.display_menu()
8 robot_rat_app.process_menu_choice()
9
10
11 if __name__ == '__main__':
12 main()
13

Referring to example 4.6 — I’m making a call to the process_menu_choice() method on
line 8. So, when this program runs, it’ll display the menu, then prompt the user for input. When
the user enters a command and hits return, the program will display the user’s command. Let’s see
this in action.

4.4.3 Test - First Iteration

Testing at this point is still just running the program and eyeballing the results as shown in fig-
ure 4-15.

Referring to figure 4-15 — I just noticed I didn’t remove the message from the RobotRatApp
constructor. Need to take care of that. OK, the menu displays, a user can make a menu choice and
the choice is printed to the console. What if the user enters something other than a 1 through 7?
I’ll just ignore erroneous input but more on that later. I’m going to move to the second item listed
in table 4-9 and work on looping the menu display and menu processing. Time to write more
code.

Figure 4-15: Testing Menu Command Processing

Coding The Robot Rat Application Chapter 4: Project Walkthrough

146 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
0

4.4.4 Code - Second Iteration

OK, taking a walk and thinking...the application should display the menu and process the
user’s menu choice...over and over... until the user exits the application. Since I already have two
methods that perform each of those functions, I just need to put them in a loop and call them
repeatedly. I’ll add another method to the RobotRatApp class to implement this feature. I’ll call it
start_application(). Example 4.7 gives the code.

4.7 robotrat_app.py (Sprint 3 v2)
1 """Implements the Robot Rat Application."""
2
3 class RobotRatApp():
4 """A Remote-Controlled Robot Rat Application."""
5
6 def __init__(self):
7 print('I am Robot Rat! I am alive!')
8
9 def display_menu(self):
10 """Prints menu items to the console."""
11 print('\n\t\tRobot Rat Control Menu\n')
12 print('\t1. Pen Up')
13 print('\t2. Pen Down')
14 print('\t3. Turn Right')
15 print('\t4. Turn Left')
16 print('\t5. Move Forward')
17 print('\t6. Print Floor')
18 print('\t7. Exit')
19
20 def process_menu_choice(self):
21 # Prompt user for input
22 # Assign input string to variable
23 user_input = input('\n\tEnter Command Number: ')
24 # Use first character of input as menu choice
25 menu_choice = user_input[0]
26 if __debug__:
27 print(f'You entered command number: {menu_choice}')
28 # Is menu_choice valid command?
29 # YES - Execute command
30 # NO - Display error message and try again
31
32 def start_application(self):
33 while True:
34 self.display_menu()
35 self.process_menu_choice()
36

Referring to example 4.7 — The start_application() definition begins on line 32. A
while loop continuously calls the display_menu() and process_menu_choice() methods
repeatedly allowing the application continue running between menu commands. The problem
now is...well...you’ll see the problem here shortly.

I modified the main.py module to call the start_application() method as shown in exam-
ple 4.8.

4.8 main.py (Sprint 3 v2)
1 """Serves as the point of entry to the Robot Rat Application."""
2
3 from robotrat_app import RobotRatApp
4
5 def main():

Chapter 4: Project Walkthrough Coding The Robot Rat Application

Computer Scripting Techniques with Python © 2023 Pulp Free Press 147

0
0
0
0
0
1
0
0

6 robot_rat_app = RobotRatApp()
7 robot_rat_app.start_application()
8
9
10 if __name__ == '__main__':
11 main()
12

Referring to example 4.8 — I replaced the calls to display_menu() and pro-
cess_menu_choice() with one call to start_application(). Let’s run the application and see
how things look.

4.4.5 Test - Second Iteration

Figure 4-16 shows the results of running the example 4.8.

Referring to figure 4-16 — Menu display and input processing is looping fine, but requires a
ctrl-c to exit, so time to return to the process_menu_choice() method and add a graceful way
to quit the application.

4.4.6 Code - Third Iteration

I need to continue to develop the process_menu_choice() method so that when the user
enters a command something useful actually happens. I’m still in the stage of creating application
scaffolding, but all this will be completed, for the most part, by the end of this sprint. For now, I
want to exit the application when user chooses menu item '7' and call method stubs on all the
other commands. Example 4.9 give the updated code.

4.9 robotrat_app.py (Sprint 3 v3)
1 """Implements the Robot Rat Application."""
2 import sys

Figure 4-16: Menu Display Process Loop Testing

Coding The Robot Rat Application Chapter 4: Project Walkthrough

148 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
0

3
4 class RobotRatApp():
5 """A Remote-Controlled Robot Rat Application."""
6
7 def __init__(self):
8 pass
9
10 def display_menu(self):
11 """Prints menu items to the console."""
12 print('\n\t\tRobot Rat Control Menu\n')
13 print('\t1. Pen Up')
14 print('\t2. Pen Down')
15 print('\t3. Turn Right')
16 print('\t4. Turn Left')
17 print('\t5. Move Forward')
18 print('\t6. Print Floor')
19 print('\t7. Exit')
20
21 def process_menu_choice(self):
22 # Prompt user for input
23 # Assign input string to variable
24 user_input = input('\n\tEnter Command Number: ')
25 # Use first character of input as menu choice
26 menu_choice = user_input[0]
27 if __debug__:
28 print(f'You entered command number: {menu_choice}')
29 # Is menu_choice valid command?
30 # YES - Execute command
31 # NO - Display error message and try again
32 match menu_choice:
33 case '1': self.set_pen_up()
34 case '2': self.set_pen_down()
35 case '3': self.turn_right()
36 case '4': self.turn_left()
37 case '5': self.move_forward()
38 case '6': self.print_floor()
39 case '7': sys.exit()
40 case _: self.print_error_message(menu_choice)
41
42
43 def start_application(self):
44 while True:
45 self.display_menu()
46 self.process_menu_choice()
47
48 def set_pen_up(self):
49 if __debug__:
50 print('set_pen_up() method called...')
51
52 def set_pen_down(self):
53 if __debug__:
54 print('set_pen_down() method called')
55
56 def turn_left(self):
57 if __debug__:
58 print('turn_left() method called...')
59
60 def turn_right(self):
61 if __debug__:

Chapter 4: Project Walkthrough Coding The Robot Rat Application

Computer Scripting Techniques with Python © 2023 Pulp Free Press 149

0
0
0
0
0
1
0
0

62 print('turn_right() method called...')
63
64 def move_forward(self):
65 if __debug__:
66 print('move_forward() method called...')
67
68 def print_floor(self):
69 if __debug__:
70 print('print_floor() method called')
71
72 def print_error_message(self, menu_choice):
73 print(f'WARNING: {menu_choice} is an invalid command!')
74

Referring to example 4.9 — Notice first that all the method names begin with action verbs:
display, process, start, set, turn, move, print. To exit the application I called the sys.exit()
method on line 39. This required me to import the sys module on line 2. I use a match statement
which begins on line 32 to process the menu_choice variable. I could have used nested if/elif
statements here but I find the match statement, available since Python 10, cleaner and easier to
decipher.

The match statement is easy to understand even for novice programmers. The value of the
variable menu_choice is examined by the match statement and if any case matches its value the
corresponding method is called. For example, if a user enters the '1' at the console, the
menu_choice variable will contain the value '1', which will match the first case and execute the
self.set_pen_up() method, which is defined on line 48.

The case _: represents the default case, meaning it will catch anything not handled by any of
the previous cases. OK, let’s take this for a test drive.

4.4.7 Test - Third Iteration

The main.py module remains unchanged at this point so just run it again. Partial results from
running the application are shown in figure 4-17

Referring to figure 4-17 — Everything seems to be running fine. I can enter commands and
exit the application when I enter '7'. If I enter an invalid command I see a warning message.
What would be nice is if the application could clear the screen between commands. I’ll work on
that in a later sprint.

4.4.8 Integrate

Nothing to integrate, really, but there is something to refactor.

4.4.9 Refactor

You’ll find that your first attempt at coding something represents a brute-force approach and
results in what I call an Ugly Baby. Another term used widely in the software development indus-
try is Code Smell. And the code that’s smelling pretty bad at the moment is the use of string liter-
als in the match statement. Before moving on I’d like to switch those out for constants that
represent menu choice values. Example 4.10 lists the refactored code.

4.10 robotrat_app.py (Sprint 3 refactored)
1 """Implements the Robot Rat Application."""
2 import sys
3

Coding The Robot Rat Application Chapter 4: Project Walkthrough

150 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
0

4 class RobotRatApp():
5 """A Remote-Controlled Robot Rat Application."""
6
7 # Menu Choice Constants
8 _PEN_UP='1'
9 _PEN_DOWN='2'
10 _TURN_RIGHT='3'
11 _TURN_LEFT='4'
12 _MOVE_FORWARD='5'
13 _PRINT_FLOOR='6'
14 _EXIT='7'
15
16 def __init__(self):
17 pass
18
19 def display_menu(self):
20 """Prints menu items to the console."""
21 print('\n\t\tRobot Rat Control Menu\n')
22 print('\t1. Pen Up')
23 print('\t2. Pen Down')
24 print('\t3. Turn Right')
25 print('\t4. Turn Left')
26 print('\t5. Move Forward')
27 print('\t6. Print Floor')
28 print('\t7. Exit')
29
30 def process_menu_choice(self):
31 # Prompt user for input
32 # Assign input string to variable
33 user_input = input('\n\tEnter Command Number: ')
34 # Use first character of input as menu choice
35 menu_choice = user_input[0]
36 if __debug__:
37 print(f'You entered command number: {menu_choice}')

Figure 4-17: Handling Invalid Commands with Default Match Case

Chapter 4: Project Walkthrough Coding The Robot Rat Application

Computer Scripting Techniques with Python © 2023 Pulp Free Press 151

0
0
0
0
0
1
0
0

38 # Is menu_choice valid command?
39 # YES - Execute command
40 # NO - Display error message and try again
41 match menu_choice:
42 case self._PEN_UP: self.set_pen_up()
43 case self._PEN_DOWN: self.set_pen_down()
44 case self._TURN_RIGHT: self.turn_right()
45 case self._TURN_LEFT: self.turn_left()
46 case self._MOVE_FORWARD: self.move_forward()
47 case self._PRINT_FLOOR: self.print_floor()
48 case self._EXIT: sys.exit()
49 case _: self.print_error_message(menu_choice)
50
51
52 def start_application(self):
53 while True:
54 self.display_menu()
55 self.process_menu_choice()
56
57 def set_pen_up(self):
58 if __debug__:
59 print('set_pen_up() method called...')
60
61 def set_pen_down(self):
62 if __debug__:
63 print('set_pen_down() method called')
64
65 def turn_left(self):
66 if __debug__:
67 print('turn_left() method called...')
68
69 def turn_right(self):
70 if __debug__:
71 print('turn_right() method called...')
72
73 def move_forward(self):
74 if __debug__:
75 print('move_forward() method called...')
76
77 def print_floor(self):
78 if __debug__:
79 print('print_floor() method called')
80
81 def print_error_message(self, menu_choice):
82 print(f'WARNING: {menu_choice} is an invalid command!')
83

Referring to example 4.10 — Beginning on line 7, I’ve defined a set of constants that map to
the menu choice number strings. There are no constants in Python, but the PEP 8 style guide
offers guidance on how to represent the notion of a constant in a program. I’ve used all uppercase
characters for the constant names and separated words within the constant name with an under-
score character '_'. Notice I have also started the name of each constant with an underscore. This
is a signal, or perhaps better described as a developer’s agreement, denoting these as being private
to the class and that they are not to be considered part of the class’s public interface. I then replace
the string literals formerly used for each of the match cases with the constants. This makes the
code a little more self-documenting in that you need not remember that string literal '1' corre-
sponds to the Pen Up menu choice, etc.

Coding The Robot Rat Application Chapter 4: Project Walkthrough

152 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
0

At this point, I retest the application to ensure I haven’t broken anything during the refactoring
and move on to the next sprint.

4.5 Development — Sprint 4

The application framework is well laid. What’s left now is to add substance to the method
stubs. I’ll start by implementing the print_floor() method, which will require a floor to print.

4.5.1 Plan

Table 4-10 lists the design considerations for Sprint 4.

Referring to table 4-10 — Getting the floor to print is a big deal so this is plenty to do for this
sprint. The floor instance variable needs to be declared and initialized. The RobotRatApp’s
__init__() method needs to be modified to accept row and column arguments when a
RobotRatApp object is created. When the floor is initialized, the print_floor() method will
step through the rows and columns, determine if an element is True or False and print a corre-
sponding character to the console. Some adjustments will need to be made to ensure the floor
prints legibly. To test the print_floor() method, I’ll create a temporary utility method that sets
a test pattern on the floor so I can see what a Robot Rat pen-down movement will look like. Let’s
look at the code for this sprint.

4.5.2 Code

Example 4.11 gives the modified robotrat_app.py code for this sprint.
4.11 robotrat_app.py (Sprint 4 v1)

1 """Implements the Robot Rat Application."""
2 import sys
3
4 class RobotRatApp():
5 """A Remote-Controlled Robot Rat Application."""
6

Check Design Consideration Design Decision

Need floor instance variable The floor instance variable will be a two-dimensional
array of boolean values. The dimensions of the array
should be set with constructor arguments.

Implement the print_floor()
method

Use a nested for loop to iterate over the rows and col-
umns of the floor array. Since the floor array contains
boolean values (True or False), the method will need
to visit each element of the array to determine what
character to print for True or False elements.

Pass rows and cols dimensions to
RobotRatApp() constructor

Modify the __init__() method to add rows and cols
parameters. Use these parameters in the constructor to
initialize floor array dimensions.

Table 4-10: Sprint 4 Design Considerations

Chapter 4: Project Walkthrough Coding The Robot Rat Application

Computer Scripting Techniques with Python © 2023 Pulp Free Press 153

0
0
0
0
0
1
0
0

7 # Menu Choice Constants
8 _PEN_UP='1'
9 _PEN_DOWN='2'
10 _TURN_RIGHT='3'
11 _TURN_LEFT='4'
12 _MOVE_FORWARD='5'
13 _PRINT_FLOOR='6'
14 _EXIT='7'
15
16 def __init__(self, rows, cols):
17 """Initialize RobotRatApp object."""
18 self._rows = rows
19 self._cols = cols
20 self._floor = [[False for i in range(cols)] for j in range(rows)]
21 self._initialize_test_patern()
22
23 def display_menu(self):
24 """Prints menu items to the console."""
25 print('\n\t\tRobot Rat Control Menu\n')
26 print('\t1. Pen Up')
27 print('\t2. Pen Down')
28 print('\t3. Turn Right')
29 print('\t4. Turn Left')
30 print('\t5. Move Forward')
31 print('\t6. Print Floor')
32 print('\t7. Exit')
33
34 def process_menu_choice(self):
35 # Prompt user for input
36 # Assign input string to variable
37 user_input = input('\n\tEnter Command Number: ')
38 # Use first character of input as menu choice
39 menu_choice = user_input[0]
40 if __debug__:
41 print(f'You entered command number: {menu_choice}')
42 # Is menu_choice valid command?
43 # YES - Execute command
44 # NO - Display error message and try again
45 match menu_choice:
46 case self._PEN_UP: self.set_pen_up()
47 case self._PEN_DOWN: self.set_pen_down()
48 case self._TURN_RIGHT: self.turn_right()
49 case self._TURN_LEFT: self.turn_left()
50 case self._MOVE_FORWARD: self.move_forward()
51 case self._PRINT_FLOOR: self.print_floor()
52 case self._EXIT: sys.exit()
53 case _: self.print_error_message(menu_choice)
54
55
56 def start_application(self):
57 while True:
58 self.display_menu()
59 self.process_menu_choice()
60
61 def set_pen_up(self):
62 if __debug__:
63 print('set_pen_up() method called...')
64
65 def set_pen_down(self):

Coding The Robot Rat Application Chapter 4: Project Walkthrough

154 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
0

66 if __debug__:
67 print('set_pen_down() method called')
68
69 def turn_left(self):
70 if __debug__:
71 print('turn_left() method called...')
72
73 def turn_right(self):
74 if __debug__:
75 print('turn_right() method called...')
76
77 def move_forward(self):
78 if __debug__:
79 print('move_forward() method called...')
80
81 def print_floor(self):
82 if __debug__:
83 print('print_floor() method called')
84 for row in self._floor:
85 print('\t', end='')
86 for col in row:
87 if col:
88 print('- ', end='')
89 else:
90 print('0 ', end='')
91 print()
92
93 def _initialize_test_patern(self):
94 self._floor[0][0] = True
95 self._floor[0][1] = True
96 self._floor[0][2] = True
97 self._floor[0][3] = True
98 self._floor[0][4] = True
99 self._floor[1][4] = True
100 self._floor[2][4] = True
101 self._floor[3][4] = True
102
103 def print_error_message(self, menu_choice):
104 print(f'WARNING: {menu_choice} is an invalid command!')
105

Referring to example 4.11 — Working from top-to-bottom, notice first that the __init__()
method on line 16 has been modified. I added two parameters, rows and cols, which I use in the
body of the method to initialize two instance fields, self._rows and self._cols, and to initial-
ize the self._floor instance variable using a list comprehension. After I’ve initialized the floor,
I call the self._initialize_test_pattern() method, which is defined on line 93, to set a test
pattern on the floor. The term "setting a test pattern" involves nothing more than setting a handful
of individual array elements to True (They are all initialized to False in the constructor.) so when
I print the floor I can see something besides zeros. This method is only needed for testing and I’ll
delete it in the final version of the program.

With the floor created and initialized, I can then implement the print_floor() method,
which begins on line 81. Essentially, the two-dimensional array is processed via a set of nested
for loops. The outer loop iterates over the array rows while the inner loop iterates over the array
columns. You could say it in plain English or pseudocode like so:

Chapter 4: Project Walkthrough Coding The Robot Rat Application

Computer Scripting Techniques with Python © 2023 Pulp Free Press 155

0
0
0
0
0
1
0
0

for each row in floor
print a tab character to push the start of each row a little to the right
visit each column in each row

check whether the element is true or false
if the element is true print the '-' character
if the element is false print the '0' character

print a new line to start a new row

Now that the RobotRatApp constructor has been modified, the main.py module will need to
be tweaked as well. Example 4.12 give the code for the modified main.py module.

4.12 main.py (Sprint 4 v1)
1 """Serves as the point of entry to the Robot Rat Application."""
2
3 from robotrat_app import RobotRatApp
4
5 def main():
6 robot_rat_app = RobotRatApp(20, 20)
7 robot_rat_app.start_application()
8
9
10 if __name__ == '__main__':
11 main()
12

Referring to example 4.12 — The only changes required appear on line 6 in the RobotRat-
App() constructor call. I’ve added two integer arguments that represent row and column dimen-
sions. Let’s test the code.

4.5.3 Test

Figure 4-18 gives the results of running the program.
Referring to figure 4-18 — Everything looks good! You can experiment with the code and use

different characters to print the floor. This marks the end of this sprint. I’ll push my changes to my
remote repository before starting the next sprint.

4.6 Development — Sprint 5

I’ll aim high during this sprint and implement the remaining Robot Rat commands including
the Move Forward command. Along the way I’ll introduce you to State Transition Diagrams.
You’ll find these helpful to work out object or entity state changes and the transitions that force a
change from one state to another.

The concept of state, as it relates to a Robot Rat, is simply the collection of attributes that
describe where upon the floor the Robot Rat is at any given moment, the direction it’s facing, and
the position of its pen. I’ll need to create instance variables to hold those values. I’ll also need to
create new data types to represent the concepts of Direction and Pen Position.

Coding The Robot Rat Application Chapter 4: Project Walkthrough

156 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
0

4.6.1 Plan

Table 4-11 lists the design considerations and decisions for sprint 5.

Check Design Consideration Design Decision

Implement Pen Up and Pen Down
Commands

Create an enumerated type to represent the concept of a
Pen Position. Create a state transition diagram to illus-
trate how to change from the Pen Up state to the Pen
Down state. I’ll also need an instance variable to store a
Robot Rat’s pen_position.

Implement the Turn Right and Turn
Left commands

Create an enumerated type to represent the concept of
Direction. The Robot Rat can face in one of four direc-
tions: NORTH, SOUTH, EAST, or WEST. Create a
state transition diagram to illustrate how to change from
one direction to another during a Turn Right or Turn
Left command. I’ll also need an instance variable to
store a Robot Rat’s direction.

Implement the Move Forward com-
mand.

The concept of a Robot Rat’s Current Position, which
represents a state, must be represented with instance
variables. Referring to figures 4-3 and 4-4, I’ll use the
variables current_row and current_column.

Table 4-11: Sprint 5 Design Considerations

Figure 4-18: Printing the Floor with Test Pattern

Chapter 4: Project Walkthrough Coding The Robot Rat Application

Computer Scripting Techniques with Python © 2023 Pulp Free Press 157

0
0
0
0
0
1
0
0

Referring to table 4-11 — Completing the items listed will take the project to the dang-near-
done point. The Move Forward command represents some of the more involved coding of the
project. But let’s start with the first item on the list and work the Pen Position problem.

4.6.1.1 State Transition Diagrams

A state transition diagram is a graphical representation of object or entity states drawn as a
directed graph consisting of vertices (circles) representing possible entity states, and transitions
between states, edges (arrows).

The state of an object is expressed by the collective states of its attributes. (Refer to figure 4-2
to see the set of attributes that comprise a Robot Rat.) Figure 4-19 shows the state transition dia-
gram for a Robot Rat’s pen position.

Referring to figure 4-19 — A Robot Rat’s pen position has two possible states: UP and
DOWN. When the program starts its pen will be set to the UP position. At some point during pro-
gram execution, a user may set the pen to the DOWN position to start drawing a pattern on the
floor. The state transition diagram shows the states (vertices) and how one state can transition to
another state (edges). If the pen is in the UP position, a call to the set_pen_down() method will
change its state from UP to DOWN. If the set_pen_down() method is called again, the pen
remains in the down position.

Figure 4-20 shows the state transition diagram for the Robot Rat’s direction.
Referring to figure 4-20 — This diagram is a bit more involved. It represents a Robot Rat’s

direction attribute, which, according to the project specification, can be in one of four possible
states: NORTH, SOUTH, EAST, or WEST. The state transition diagram shows that when the pro-
gram starts the Robot Rat’s direction is set to EAST. A call to the turn_right() method will
change direction state to SOUTH. You can see from the diagram how successive calls to the
turn_right() and turn_left() methods changes a Robot Rat’s direction.

4.6.1.2 Implementing Move Forward

There are a few different ways I can implement the move forward command. Moving the
Robot Rat about the floor differs depending on whether the pen is UP or DOWN. If the pen is UP
then moving is simply a matter of updating a Robot Rat’s position (current row and current col-
umn) to a new location based on how far the rat moves in a particular direction. If the pen is

Figure 4-19: Pen Position State Transition Diagram

Coding The Robot Rat Application Chapter 4: Project Walkthrough

158 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
0

DOWN then the floor array must be manipulated to indicate where the Robot Rat traversed so a
pattern can be drawn. When the pen is down, each visited array element must be set to True.

Upon further analysis, another set of questions regarding movement emerge:
• How far can a Robot Rat move?
• Should it stop at the floor’s edges or be allowed to continue outside the visible
bounds of the floor, as if there were a virtual floor extending infinitely in all direc-
tions?

• Should the movement wrap? Say, for example, when the Robot Rat moves past
the floor’s edge, should it reemerge on the opposite side on the same column or
row or even perhaps on a different column or row?

I’ve seen students implement all kinds of movement scenarios. I will take the finite edges
approach and stop the Robot Rat dead in its tracks if it tries to move beyond the visible bounds of
the floor. OK, let’s see some code.

4.6.2 Code

Example 4.13 gives the code for the modified RobotRatApp class.
4.13 robotrat_app,py (Sprint 5 v1)

1 """Implements the Robot Rat Application."""
2 import sys
3 from enum import Enum
4
5
6 class RobotRatApp():
7 """A Remote-Controlled Robot Rat Application."""
8
9 # Menu Choice Constants
10 _PEN_UP = '1'
11 _PEN_DOWN = '2'
12 _TURN_RIGHT = '3'
13 _TURN_LEFT = '4'

Figure 4-20: Direction State Transition Diagram

Chapter 4: Project Walkthrough Coding The Robot Rat Application

Computer Scripting Techniques with Python © 2023 Pulp Free Press 159

0
0
0
0
0
1
0
0

14 _MOVE_FORWARD = '5'
15 _PRINT_FLOOR = '6'
16 _EXIT = '7'
17
18 # Enumerated Types
19 class PenPositions(Enum):
20 UP = 0
21 DOWN = 1
22
23 class Directions(Enum):
24 NORTH = 0
25 EAST = 1
26 SOUTH = 2
27 WEST = 3
28
29 def __init__(self, rows, cols):
30 """Initialize RobotRatApp object."""
31 self._rows = rows
32 self._cols = cols
33 self._floor = [[False for i in range(cols)] for j in range(rows)]
34 self._initialize_test_patern()
35 self._pen_position = self.PenPositions.UP
36 self._direction = self.Directions.EAST
37 self._current_row = 0
38 self._current_col = 0
39
40 def display_menu(self):
41 """Prints menu items to the console."""
42 print('\n\t\tRobot Rat Control Menu\n')
43 print('\t1. Pen Up')
44 print('\t2. Pen Down')
45 print('\t3. Turn Right')
46 print('\t4. Turn Left')
47 print('\t5. Move Forward')
48 print('\t6. Print Floor')
49 print('\t7. Exit')
50
51 def process_menu_choice(self):
52 # Prompt user for input
53 # Assign input string to variable
54 user_input = input('\n\tEnter Command Number: ')
55 # Use first character of input as menu choice
56 menu_choice = user_input[0]
57 if __debug__:
58 print(f'You entered command number: {menu_choice}')
59 # Is menu_choice valid command?
60 # YES - Execute command
61 # NO - Display error message and try again
62 match menu_choice:
63 case self._PEN_UP: self.set_pen_up()
64 case self._PEN_DOWN: self.set_pen_down()
65 case self._TURN_RIGHT: self.turn_right()
66 case self._TURN_LEFT: self.turn_left()
67 case self._MOVE_FORWARD: self.move_forward()
68 case self._PRINT_FLOOR: self.print_floor()
69 case self._EXIT: sys.exit()
70 case _: self.print_error_message(menu_choice)
71
72 def start_application(self):

Coding The Robot Rat Application Chapter 4: Project Walkthrough

160 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
0

73 while True:
74 self.display_menu()
75 self.process_menu_choice()
76
77 def set_pen_up(self):
78 if __debug__:
79 print('set_pen_up() method called...')
80 self._pen_position = self.PenPositions.UP
81 print(f'Pen is {self._pen_position}')
82
83 def set_pen_down(self):
84 if __debug__:
85 print('set_pen_down() method called')
86 self._pen_position = self.PenPositions.DOWN
87 print(f'Pen is {self._pen_position}')
88
89 def turn_left(self):
90 if __debug__:
91 print('turn_left() method called...')
92 match(self._direction):
93 case self.Directions.NORTH:
94 self._direction = self.Directions.WEST
95 case self.Directions.WEST:
96 self._direction = self.Directions.SOUTH
97 case self.Directions.SOUTH:
98 self._direction = self.Directions.EAST
99 case self.Directions.EAST:
100 self._direction = self.Directions.NORTH
101 case _: self._direction = self.Directions.EAST
102
103 print(f'Robot Rat is facing {self._direction}')
104
105 def turn_right(self):
106 if __debug__:
107 print('turn_right() method called...')
108 match(self._direction):
109 case self.Directions.NORTH:
110 self._direction = self.Directions.EAST
111 case self.Directions.EAST:
112 self._direction = self.Directions.SOUTH
113 case self.Directions.SOUTH:
114 self._direction = self.Directions.WEST
115 case self.Directions.WEST:
116 self._direction = self.Directions.NORTH
117 case _: self._direction = self.Directions.EAST
118
119 print(f'Robot Rat is facing {self._direction}')
120
121 def move_forward(self):
122 if __debug__:
123 print('move_forward() method called...')
124 spaces_to_move = 0
125 try:
126 spaces_to_move = int(input("Enter spaces to move: "))
127 except Exception as e:
128 print('Invalid movment number. Setting to 1')
129 spaces_to_move = 1
130
131 match(self._pen_position):

Chapter 4: Project Walkthrough Coding The Robot Rat Application

Computer Scripting Techniques with Python © 2023 Pulp Free Press 161

0
0
0
0
0
1
0
0

132 case self.PenPositions.UP:
133 match(self._direction):
134 case self.Directions.NORTH:
135 self._current_row -= spaces_to_move
136 if self._current_row < 0:
137 self._current_row = 0
138 case self.Directions.EAST:
139 self._current_col += spaces_to_move
140 if self._current_col > (self._cols - 1):
141 self._current_col = (self._cols - 1)
142 case self.Directions.SOUTH:
143 self._current_row += spaces_to_move
144 if self._current_row > (self._rows - 1):
145 self._current_row = (self._rows - 1)
146 case self.Directions.WEST:
147 self._current_col -= spaces_to_move
148 if self._current_col < 0:
149 self._current_col = 0
150 case self.PenPositions.DOWN:
151 match(self._direction):
152 case self.Directions.NORTH:
153 while (self._current_row > -1) and (spaces_to_move > 0):
154 self._floor[self._current_row][self._current_col] = True
155 if self._current_row > 0:
156 self._current_row -= 1
157 else:
158 break
159 spaces_to_move -= 1
160 case self.Directions.EAST:
161 while (self._current_col < self._cols) and (spaces_to_move >
0):
162 self._floor[self._current_row][self._current_col] = True
163 if self._current_col < (self._cols - 1):
164 self._current_col += 1
165 else:
166 break
167 spaces_to_move -= 1
168 case self.Directions.SOUTH:
169 while (self._current_row < self._rows) and (spaces_to_move >
0):
170 self._floor[self._current_row][self._current_col] = True
171 if self._current_row < (self._rows - 1):
172 self._current_row += 1
173 else:
174 break
175 spaces_to_move -= 1
176 case self.Directions.WEST:
177 while (self._current_col > -1) and (spaces_to_move > 0):
178 self._floor[self._current_row][self._current_col] = True
179 if self._current_col > 0:
180 self._current_col -= 1
181 else:
182 break
183 spaces_to_move -= 1
184
185 print(f'Robot Rat at [{self._current_row}][{self._current_col}] \
186 facing {self._direction} {self._pen_position}')
187
188 def print_floor(self):

Coding The Robot Rat Application Chapter 4: Project Walkthrough

162 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
0

189 if __debug__:
190 print('print_floor() method called')
191 for row in self._floor:
192 print('\t', end='')
193 for col in row:
194 if col:
195 print('- ', end='')
196 else:
197 print('0 ', end='')
198 print()
199
200 def _initialize_test_patern(self):
201 self._floor[0][0] = True
202 self._floor[0][1] = True
203 self._floor[0][2] = True
204 self._floor[0][3] = True
205 self._floor[0][4] = True
206 self._floor[1][4] = True
207 self._floor[2][4] = True
208 self._floor[3][4] = True
209
210 def print_error_message(self, menu_choice):
211 print(f'WARNING: {menu_choice} is an invalid command!')
212

Referring to example 4.13 — Starting from the top, on line 3, I import the Enum class from the
enum module. I’m using enumerated types to represent the pen position and direction states. In
Python, an enumerated type is a class that extends the Enum class. I have defined these as inner
classes within the RobotRatApp class.

The PenPositions enumerated type is defined on line 19. It defines two possible values: UP,
which is assigned the value 0, and DOWN, which is assigned the value 1. Note that it doesn’t really
matter what values are assigned, as long as they are unique. The Directions enumerated type is
defined on line 23. It defines four possible values: NORTH, EAST, SOUTH, and WEST. You can
see the assigned integer values by reading the code. These two new types are used to initialize the
Robot Rat instance variable _pen_position and _direction as shown on lines 35 and 36.

On lines 37 and 38, I added two new instance variables _current_row and _current_col
and initialize each to 0. This completes the set of Robot Rat attributes.

Moving down to line 80 in the body of the set_pen_up() method, I set the _pen_position
variable to PenPositions.UP. Following that, on line 81, I print the current state of the Robot
Rat’s pen position. The set_pen_down() method works in similar fashion. I leave it to you as an
exercise to verify this code satisfies the Pen Position State Transition Diagram shown earlier in
figure 4-19

The turn_left() method begins on line 89. I use a match statement to check the current state
of the _direction variable. The default case sets the Robot Rat’s direction to EAST. You can
verify for yourself the code in both the turn_left() and turn_right() methods satisfy the
Direction State Transition Diagram shown in figure 4-20.

The move_forward() method that starts on line 121 required the most work during this sprint.
Lines 124 through 129 get the spaces_to_move from the user. The outermost match statement,
which begins on line 133, checks the state of the _pen_position variable. Floor movement is
processed according to whether the pen is UP or DOWN. Inner match statements check the state of
the _direction variable and proceed according to which direction the Robot Rat is facing. You

Chapter 4: Project Walkthrough Coding The Robot Rat Application

Computer Scripting Techniques with Python © 2023 Pulp Free Press 163

0
0
0
0
0
1
0
0

can step through the code to see how movement is processed and how each element of the _floor
array is set when the pen is down.

4.6.2.0.1 A Word On Implementation

Like Sprint 3, this sprint required multiple sub-iterations of plan, code, and test. I started by
researching Python enumerated types. I then had to decide on whether to declare the enumeration
classes PenPositions and Directions inside the RobotRatApp class or in a separate module. I
opted to make them inner classes because that just seemed like the right thing to do. Sometimes a
design decision comes down to gut instinct. Only time will tell if such decisions ultimately prove
to be good or bad.

Once I had the enumerated types defined, I added the _direction and _pen_position
instance variables and initialized them in the __init__() method using the enumerated types. I
then completed the set_pen_up(), set_pen_down(), turn_left(), and turn_right() meth-
ods. Once they were done, I turned my attention to the move_forward() method.

I implemented the move_forward() method in sub-iterations as well, starting first with move-
ment when the pen is UP. Once I had that working, I implemented movement when the pen was
DOWN, which represents the most challenging section of the code. When I completed the move_-
forward() method, or rather, when I thought I had completed the method, it was time to give
everything a good, thorough shakedown.

4.6.3 Test

Testing the code in this sprint is quite involved. I need to validate menu commands 1 through
6 and move the Robot Rat all around the floor with the pen in the UP and DOWN positions. I
need to try to break the program by trying to move outside the bounds of the floor. Figure 4-21
shows the floor pattern after an extended testing session.

Referring to figure 4-21 — Everything seems to run fine. There are a handful of issues I need
to fix. During the course of development I’ve accumulated some technical debt, which is a term
used to refer to known issues with the code that need to be addressed but for one reason or another
have been ignored. I’ll address technical debt in the next sprint.

Figure 4-21: Testing Sprint 5 Features

Coding The Robot Rat Application Chapter 4: Project Walkthrough

164 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
0

4.6.4 Integrate

Integration has taken place organically. By this I mean I’ve added new features (code) to
existing code. For larger more complex projects, integration of new or separately-developed com-
ponents would be more involved.

4.6.5 Sprint Retrospective

I added a lot of meaningful functionality to the Robot Rat application. The analysis performed
earlier on Robot Rat attributes and movement helped a lot. I did notice that I’ve omitted several
docstrings here and there, and I can remove the test pattern code as it’s no longer necessary. Time
to move on to the next and final sprint of the chapter.

4.7 Development — Sprint 6

This is the final Robot Rat application development sprint. While there are a lot of cool fea-
tures I could add to Robot Rat, like diagonal directions or randomized movement, the project as it
stands satisfies the project specification so instead I’ll focus my efforts on reducing accumulated
technical debt. The technical debt as I see it includes removing the test pattern code, reorganizing
the code for better aesthetics, adding missing docstrings, and adding a project header to the top of
each file. If you are a student you’ll want to add a project header to identify ownership of your
source files when you submit them to your instructor.

Something else bugs me about the application. I’d like to see where the Robot Rat is on the
floor when I print the floor pattern. I think I’ll rework the print_floor() method to display the
Robot Rat’s location on the floor.

4.7.1 Plan

Table 4-12 lists the project’s technical debt and remediation actions.

Referring to table 4-12 — Completing these activities should put the project in good form. I
may find something else to improve as I dig into the code.

Check Technical Debt Remediation Action

Add Project Header Expand the module docstring to add Date, Project, Stu-
dent, and Class fields. Add this header to both project
files robotrat_app.py and main.py

Add Missing Docstrings Add docstrings to all class methods.

Mark Robot Rat’s Floor Position Rework the print_floor() method to print a symbol
on the Robot Rat’s current floor position.

Reorganize Code Reorganize code to put method definitions in the order
they appear in the command menu. Place the
start_application() method at the bottom.

Table 4-12: Sprint 6 Technical Debt and Remediation Actions

Chapter 4: Project Walkthrough Coding The Robot Rat Application

Computer Scripting Techniques with Python © 2023 Pulp Free Press 165

0
0
0
0
0
1
0
0

4.7.2 Code

Example 4.14 gives the listing of the cleaned up robotrat_app.py module.
4.14 robotrat_app.py (Sprint 6)

1 """Implements the Robot Rat Application.
2
3 Date: 31 December 2022
4 Project: Robot Rat
5 Student: Rick Miller
6 Class: IT-566: Computer Scripting Techniques
7 """
8
9 import sys
10 from enum import Enum
11
12 class RobotRatApp():
13 """A Remote-Controlled Robot Rat Application."""
14
15 # Menu Choice Constants
16 _PEN_UP = '1'
17 _PEN_DOWN = '2'
18 _TURN_RIGHT = '3'
19 _TURN_LEFT = '4'
20 _MOVE_FORWARD = '5'
21 _PRINT_FLOOR = '6'
22 _EXIT = '7'
23
24 # Enumerated Types
25 class PenPositions(Enum):
26 """Valid Pen Position States"""
27 UP = 0
28 DOWN = 1
29
30
31 class Directions(Enum):
32 """Valid Directions"""
33 NORTH = 0
34 EAST = 1
35 SOUTH = 2
36 WEST = 3
37
38
39 def __init__(self, rows, cols):
40 """Initialize RobotRatApp object."""
41 self._rows = rows
42 self._cols = cols
43 self._floor = [[False for i in range(cols)] for j in range(rows)]
44 self._pen_position = self.PenPositions.UP
45 self._direction = self.Directions.EAST
46 self._current_row = 0
47 self._current_col = 0
48
49
50 def display_menu(self):
51 """Prints menu items to the console."""
52 print('\n\t\tRobot Rat Control Menu\n')
53 print('\t1. Pen Up')
54 print('\t2. Pen Down')

Coding The Robot Rat Application Chapter 4: Project Walkthrough

166 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
0

55 print('\t3. Turn Right')
56 print('\t4. Turn Left')
57 print('\t5. Move Forward')
58 print('\t6. Print Floor')
59 print('\t7. Exit')
60
61
62 def process_menu_choice(self):
63 """Process menu commands."""
64 # Prompt user for input
65 # Assign input string to variable
66 user_input = input('\n\tEnter Command Number: ')
67 # Use first character of input as menu choice
68 menu_choice = user_input[0]
69 if __debug__:
70 print(f'You entered command number: {menu_choice}')
71 # Is menu_choice valid command?
72 # YES - Execute command
73 # NO - Display error message and try again
74 match menu_choice:
75 case self._PEN_UP: self.set_pen_up()
76 case self._PEN_DOWN: self.set_pen_down()
77 case self._TURN_RIGHT: self.turn_right()
78 case self._TURN_LEFT: self.turn_left()
79 case self._MOVE_FORWARD: self.move_forward()
80 case self._PRINT_FLOOR: self.print_floor()
81 case self._EXIT: sys.exit()
82 case _: self.print_error_message(menu_choice)
83
84
85 def set_pen_up(self):
86 """Changes pen state to UP."""
87 if __debug__:
88 print('set_pen_up() method called...')
89 self._pen_position = self.PenPositions.UP
90 print(f'Pen is {self._pen_position}')
91
92
93 def set_pen_down(self):
94 """Changes pen state to DOWN."""
95 if __debug__:
96 print('set_pen_down() method called')
97 self._pen_position = self.PenPositions.DOWN
98 print(f'Pen is {self._pen_position}')
99
100
101 def turn_right(self):
102 """Turns Robot Rat to the left."""
103 if __debug__:
104 print('turn_right() method called...')
105 match(self._direction):
106 case self.Directions.NORTH:
107 self._direction = self.Directions.EAST
108 case self.Directions.EAST:
109 self._direction = self.Directions.SOUTH
110 case self.Directions.SOUTH:
111 self._direction = self.Directions.WEST
112 case self.Directions.WEST:
113 self._direction = self.Directions.NORTH

Chapter 4: Project Walkthrough Coding The Robot Rat Application

Computer Scripting Techniques with Python © 2023 Pulp Free Press 167

0
0
0
0
0
1
0
0

114 case _: self._direction = self.Directions.EAST
115
116
117 def turn_left(self):
118 """Turns Robot Rat to the right."""
119 if __debug__:
120 print('turn_left() method called...')
121 match(self._direction):
122 case self.Directions.NORTH:
123 self._direction = self.Directions.WEST
124 case self.Directions.WEST:
125 self._direction = self.Directions.SOUTH
126 case self.Directions.SOUTH:
127 self._direction = self.Directions.EAST
128 case self.Directions.EAST:
129 self._direction = self.Directions.NORTH
130 case _: self._direction = self.Directions.EAST
131
132
133 def move_forward(self):
134 """ Moves Robot Rat forward by indicated number of spaces.
135 If the pen is UP the Robot Rat does not leave a mark on
136 the floor. If the pen is DOWN the Robot Rat leaves a mark
137 on the floor.
138 """
139 if __debug__:
140 print('move_forward() method called...')
141 spaces_to_move = 0
142 try:
143 spaces_to_move = int(input("Enter spaces to move: "))
144 except Exception as e:
145 print('Invalid movment number. Setting to 1')
146 spaces_to_move = 1
147
148 match(self._pen_position):
149 case self.PenPositions.UP:
150 match(self._direction):
151 case self.Directions.NORTH:
152 self._current_row -= spaces_to_move
153 if self._current_row < 0:
154 self._current_row = 0
155 case self.Directions.EAST:
156 self._current_col += spaces_to_move
157 if self._current_col > (self._cols - 1):
158 self._current_col = (self._cols - 1)
159 case self.Directions.SOUTH:
160 self._current_row += spaces_to_move
161 if self._current_row > (self._rows - 1):
162 self._current_row = (self._rows - 1)
163 case self.Directions.WEST:
164 self._current_col -= spaces_to_move
165 if self._current_col < 0:
166 self._current_col = 0
167 case self.PenPositions.DOWN:
168 match(self._direction):
169 case self.Directions.NORTH:
170 while (self._current_row > -1) and (spaces_to_move > 0):
171 self._floor[self._current_row][self._current_col] = True
172 if self._current_row > 0:

Coding The Robot Rat Application Chapter 4: Project Walkthrough

168 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
0

173 self._current_row -= 1
174 else:
175 break
176 spaces_to_move -= 1
177 case self.Directions.EAST:
178 while (self._current_col < self._cols) and (spaces_to_move >
0):
179 self._floor[self._current_row][self._current_col] = True
180 if self._current_col < (self._cols - 1):
181 self._current_col += 1
182 else:
183 break
184 spaces_to_move -= 1
185 case self.Directions.SOUTH:
186 while (self._current_row < self._rows) and (spaces_to_move >
0):
187 self._floor[self._current_row][self._current_col] = True
188 if self._current_row < (self._rows - 1):
189 self._current_row += 1
190 else:
191 break
192 spaces_to_move -= 1
193 case self.Directions.WEST:
194 while (self._current_col > -1) and (spaces_to_move > 0):
195 self._floor[self._current_row][self._current_col] = True
196 if self._current_col > 0:
197 self._current_col -= 1
198 else:
199 break
200 spaces_to_move -= 1
201
202
203 def print_floor(self):
204 """ Prints the floor pattern."""
205 if __debug__:
206 print('print_floor() method called')
207 for rindx, row in enumerate(self._floor):
208 print('\t', end='')
209 for cindx, col in enumerate(row):
210 if((rindx == self._current_row) and (cindx == self._current_col)):
211 print('X ', end='')
212 elif col:
213 print('- ', end='')
214 else:
215 print('0 ', end='')
216
217 print()
218
219
220 def print_status(self):
221 """Displays Robot Rat current position, direction, and pen position."""
222 print(f'\n\tRobot Rat at [{self._current_row}][{self._current_col}] \
223 facing {self._direction} {self._pen_position}')
224
225
226 def print_error_message(self, menu_choice):
227 """Warns of an invalid command entry."""
228 print(f'WARNING: {menu_choice} is an invalid command!')
229

Chapter 4: Project Walkthrough Final Considerations

Computer Scripting Techniques with Python © 2023 Pulp Free Press 169

0
0
0
0
0
1
0
0

230
231 def start_application(self):
232 """Start application processing loop."""
233 while True:
234 self.display_menu()
235 self.print_status()
236 self.process_menu_choice()
237

Referring to example 4.14 — You can see the header information at the top of the file pro-
vides clarifying information about the purpose of the module and who wrote it. If you’re a student
most professors require similar identifying information be included at the top of each source file.
If you’re a practicing professional, your header information may be set by engineering team pol-
icy.

I put most of the work into the revised print_floor() method. Instead of using implied iter-
ations, I’m now using the enumerate() method to extract both the index and the value from the
iterable object. The enumerate() method returns a two-item tuple with the first item being the
index (an integer) and the second item being the value. The outer for loop begins on line 207 and
processes the rows. So, for each row, the enumerate() method extracts the row index, and the list
of columns associated with that row. These tuple values are unpacked into the variables rindx
and row. The inner for loop which begins on line 209 processes the columns. The enumerate()
method again returns a two-item tuple consisting of the item index and value. The tuple is
unpacked into the variables cindx and col. Now that I have the row index and column index, I
can compare those values with the Robot Rat’s _current_row and _current_col attributes and
if they match then draw an 'X' on that spot.

While I was in the code I did some refactoring. I consolidated several status report messages,
like when a user entered a Turn Right, Turn Left, or Pen Up and Pen Down command. I removed
those from the code and created the print_status() method which begins on line 220. I then
added a call to the print_status() method in the body of the while loop on line 235 in the
start_application() method.

Finally, I used pylint to check the code for PEP 8 code format violations. In Visual Studio
Code open the command palette and select your Python linter of choice, install it, and enable
Python linting.

4.7.3 Test

Figure 4-22 shows the results of running the improved program. Referring to figure 4-22 —
This looks much cleaner and better organized. Plus it’s nice to see where the Robot Rat is on the
floor.

5 Final Considerations

At the end of Sprint 6 I have a program that satisfies and in some areas exceeds the Robot Rat
project specification, but this is a very simple application. If the project specification said you
needed to control multiple robot rats around a floor, then that would have demanded a different
architecture. Piling it on..., if the project required different types of remote controlled objects, that
would again require a completely different architecture. You’ll learn more about these advanced
application architectural concepts as you progress through the book.

Final Considerations Chapter 4: Project Walkthrough

170 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
0

5.1 Clearing The Terminal Screen

As it stands now, the Robot Rat application runs perfectly fine on all three operating systems:
Linux, macOS, and Microsoft Windows. Python does not have a built-in clear screen function and
so developers are left to their own devices to create one. This requires making a call to an avail-
able shell command which essentially boils down to two different commands depending on
whether a program is running in a Windows (cls) or Unix/Linux (clear) terminal.

Table 4-13 lists operating systems, terminal types, clear screen commands, and their effects.

OS
(name) Terminal Type Command Effect

Windows
(nt)

Git Bash clear Clears screen and screen buffer.

PowerShell clear, cls Clears screen and screen buffer.

Command Prompt cls Clears screen and screen buffer.

Table 4-13: Effects of Clear Screen Commands on OS Terminal Types

Figure 4-22: Robot Rat Location Marked with an X

Chapter 4: Project Walkthrough Final Considerations

Computer Scripting Techniques with Python © 2023 Pulp Free Press 171

0
0
0
0
0
1
0
0

Referring to table 4-13 — You can see the effects of clearing the terminal screen differ
between operating systems. Clearing the terminal screen on Windows and Linux results in every-
thing being cleared. You’re left with the command prompt. On macOS, clearing the screen clears
the visible terminal window but leaves the screen buffer intact. You can scroll up to see the termi-
nal history. The effects of the different commands means little for our purposes. What does matter
is that there are different commands between Windows and Linux/macOS.

The takeaway from table 4-13 is that if you want to clear the screen via Python code, you’ll
need to make a call to either 'cls' or 'clear'. If you want your program to run error-free and
cross-platform in all the terminals listed above, then you’ll need to determine in which operating
system the program is running and call the corresponding command. Fortunately, Python makes
this easy to do. Example 4.15 give the code for the modified RobotRatApp class.

4.15 robotrat_app.py (clear_screen() method)
1 """Implements the Robot Rat Application.
2
3 Date: 31 December 2022
4 Project: Robot Rat
5 Student: Rick Miller
6 Class: IT-566: Computer Scripting Techniques
7 """
8
9 import os
10 import sys
11 from enum import Enum
12
13 class RobotRatApp():
14 """A Remote-Controlled Robot Rat Application."""
15
16 # Menu Choice Constants
17 _PEN_UP = '1'
18 _PEN_DOWN = '2'
19 _TURN_RIGHT = '3'
20 _TURN_LEFT = '4'
21 _MOVE_FORWARD = '5'
22 _PRINT_FLOOR = '6'
23 _EXIT = '7'
24
25 # Enumerated Types
26 class PenPositions(Enum):
27 """Valid Pen Position States"""
28 UP = 0

macOS
(posix)

iTerm clear Clears screen only. Leaves buffer intact.

Terminal clear Clears screen only. Leaves buffer intact.

Linux
(posix)

Terminator clear Clears screen and screen buffer.

Terminal clear Clears screen and screen buffer

OS
(name) Terminal Type Command Effect

Table 4-13: Effects of Clear Screen Commands on OS Terminal Types (Continued)

Final Considerations Chapter 4: Project Walkthrough

172 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
0

29 DOWN = 1
30
31
32 class Directions(Enum):
33 """Valid Directions"""
34 NORTH = 0
35 EAST = 1
36 SOUTH = 2
37 WEST = 3
38
39
40 def __init__(self, rows, cols):
41 """Initialize RobotRatApp object."""
42 self._rows = rows
43 self._cols = cols
44 self._floor = [[False for i in range(cols)] for j in range(rows)]
45 self._pen_position = self.PenPositions.UP
46 self._direction = self.Directions.EAST
47 self._current_row = 0
48 self._current_col = 0
49
50
51 def display_menu(self):
52 """Prints menu items to the console."""
53 print('\n\t\tRobot Rat Control Menu\n')
54 print('\t1. Pen Up')
55 print('\t2. Pen Down')
56 print('\t3. Turn Right')
57 print('\t4. Turn Left')
58 print('\t5. Move Forward')
59 print('\t6. Print Floor')
60 print('\t7. Exit')
61
62
63 def process_menu_choice(self):
64 """Process menu commands."""
65 # Declare variable to hold user input
66 user_input = self._PRINT_FLOOR
67 # Declare variable to hold converted menu choice
68 menu_choice = self._PRINT_FLOOR
69 try:
70 # Prompt user for input
71 user_input = input('\n\tEnter Command Number: ')
72 # Use first character from input string
73 menu_choice = user_input[0]
74 except:
75 # If there's a problem just print the floor
76 menu_choice = self._PRINT_FLOOR
77
78 if __debug__:
79 print(f'You entered command number: {menu_choice}')
80 # Is menu_choice valid command?
81 # YES - Execute command
82 # NO - Display error message and try again
83 match menu_choice:
84 case self._PEN_UP: self.set_pen_up()
85 case self._PEN_DOWN: self.set_pen_down()
86 case self._TURN_RIGHT: self.turn_right()
87 case self._TURN_LEFT: self.turn_left()

Chapter 4: Project Walkthrough Final Considerations

Computer Scripting Techniques with Python © 2023 Pulp Free Press 173

0
0
0
0
0
1
0
0

88 case self._MOVE_FORWARD: self.move_forward()
89 case self._PRINT_FLOOR: self.print_floor()
90 case self._EXIT: sys.exit()
91 case _: self.print_error_message(menu_choice)
92
93
94 def set_pen_up(self):
95 """Changes pen state to UP."""
96 if __debug__:
97 print('set_pen_up() method called...')
98 self._pen_position = self.PenPositions.UP
99 print(f'Pen is {self._pen_position}')
100
101
102 def set_pen_down(self):
103 """Changes pen state to DOWN."""
104 if __debug__:
105 print('set_pen_down() method called')
106 self._pen_position = self.PenPositions.DOWN
107 print(f'Pen is {self._pen_position}')
108
109
110 def turn_right(self):
111 """Turns Robot Rat to the left."""
112 if __debug__:
113 print('turn_right() method called...')
114 match(self._direction):
115 case self.Directions.NORTH:
116 self._direction = self.Directions.EAST
117 case self.Directions.EAST:
118 self._direction = self.Directions.SOUTH
119 case self.Directions.SOUTH:
120 self._direction = self.Directions.WEST
121 case self.Directions.WEST:
122 self._direction = self.Directions.NORTH
123 case _: self._direction = self.Directions.EAST
124
125
126 def turn_left(self):
127 """Turns Robot Rat to the right."""
128 if __debug__:
129 print('turn_left() method called...')
130 match(self._direction):
131 case self.Directions.NORTH:
132 self._direction = self.Directions.WEST
133 case self.Directions.WEST:
134 self._direction = self.Directions.SOUTH
135 case self.Directions.SOUTH:
136 self._direction = self.Directions.EAST
137 case self.Directions.EAST:
138 self._direction = self.Directions.NORTH
139 case _: self._direction = self.Directions.EAST
140
141
142 def move_forward(self):
143 """ Moves Robot Rat forward by indicated number of spaces.
144 If the pen is UP the Robot Rat does not leave a mark on
145 the floor. If the pen is DOWN the Robot Rat leaves a mark
146 on the floor.

Final Considerations Chapter 4: Project Walkthrough

174 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
0

147 """
148 if __debug__:
149 print('move_forward() method called...')
150 spaces_to_move = 0
151 try:
152 spaces_to_move = int(input("Enter spaces to move: "))
153 except Exception as e:
154 print('Invalid movment number. Setting to 1')
155 spaces_to_move = 1
156
157 match(self._pen_position):
158 case self.PenPositions.UP:
159 match(self._direction):
160 case self.Directions.NORTH:
161 self._current_row -= spaces_to_move
162 if self._current_row < 0:
163 self._current_row = 0
164 case self.Directions.EAST:
165 self._current_col += spaces_to_move
166 if self._current_col > (self._cols - 1):
167 self._current_col = (self._cols - 1)
168 case self.Directions.SOUTH:
169 self._current_row += spaces_to_move
170 if self._current_row > (self._rows - 1):
171 self._current_row = (self._rows - 1)
172 case self.Directions.WEST:
173 self._current_col -= spaces_to_move
174 if self._current_col < 0:
175 self._current_col = 0
176 case self.PenPositions.DOWN:
177 match(self._direction):
178 case self.Directions.NORTH:
179 while (self._current_row > -1) and (spaces_to_move > 0):
180 self._floor[self._current_row][self._current_col] = True
181 if self._current_row > 0:
182 self._current_row -= 1
183 else:
184 break
185 spaces_to_move -= 1
186 case self.Directions.EAST:
187 while (self._current_col < self._cols) and (spaces_to_move >
0):
188 self._floor[self._current_row][self._current_col] = True
189 if self._current_col < (self._cols - 1):
190 self._current_col += 1
191 else:
192 break
193 spaces_to_move -= 1
194 case self.Directions.SOUTH:
195 while (self._current_row < self._rows) and (spaces_to_move >
0):
196 self._floor[self._current_row][self._current_col] = True
197 if self._current_row < (self._rows - 1):
198 self._current_row += 1
199 else:
200 break
201 spaces_to_move -= 1
202 case self.Directions.WEST:
203 while (self._current_col > -1) and (spaces_to_move > 0):

Chapter 4: Project Walkthrough Final Considerations

Computer Scripting Techniques with Python © 2023 Pulp Free Press 175

0
0
0
0
0
1
0
0

204 self._floor[self._current_row][self._current_col] = True
205 if self._current_col > 0:
206 self._current_col -= 1
207 else:
208 break
209 spaces_to_move -= 1
210
211
212 def print_floor(self):
213 """ Prints the floor pattern."""
214 if __debug__:
215 print('print_floor() method called')
216 for rindx, row in enumerate(self._floor):
217 print('\t', end='')
218 for cindx, col in enumerate(row):
219 if((rindx == self._current_row) and (cindx == self._current_col)):
220 print('X ', end='')
221 elif col:
222 print('- ', end='')
223 else:
224 print('0 ', end='')
225
226 print()
227
228
229 def print_status(self):
230 """Displays Robot Rat current position, direction, and pen position."""
231 print(f'\n\tRobot Rat at [{self._current_row}][{self._current_col}] \
232 facing {self._direction} {self._pen_position}')
233
234 def print_error_message(self, menu_choice):
235 """Warns of an invalid command entry."""
236 print(f'WARNING: {menu_choice} is an invalid command!')
237
238 def pause_program(self):
239 input('Press any key to continue... ')
240
241 def clear_screen(self):
242 match(os.name):
243 case 'posix':
244 os.system('clear')
245 case 'nt':
246 os.system('cls')
247
248 def start_application(self):
249 """Start application processing loop."""
250 while True:
251 self.clear_screen()
252 self.display_menu()
253 self.print_status()
254 self.process_menu_choice()
255 self.pause_program()
256

Referring to example 4.15 — Starting from the top. On line 9, I import the os module, which
I use in the clear_screen() method, which begins on line 241. The match statement checks the
name of the operating system as determined by checking the os.name property. If the name is
'posix' then a call is made to os.system('clear'). If the name is 'nt' the 'cls' command is

Final Considerations Chapter 4: Project Walkthrough

176 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
0

called instead. Note that os.system('cls') works just fine in the Git Bash terminal even though
typing the cls command directly in the terminal does not unless it’s aliased to the clear com-
mand.

Clearing the screen requires a pause or else a user will be unable to see the floor when it’s
printed to the console, so I created a pause_program() method on line 238, which prompts the
user with the well-known "Press any key to continue..." message.

Next, I added these two methods to the start_application() method as you can see from
the code.

While I was poking around and doing some more testing, I noticed that if a user just hits enter
without typing a command, the program throws an exception due to there being no string from
which to extract a command. To fix this problem, I modified the process_menu_choice()
method, which begins on line 63, and enclosed the command input code in a try/except block.

5.2 Command-Line Parameters

What if you wanted a bigger or smaller floor? The current version of the main.py module hard
codes the floor dimensions into the RobotRatApp() constructor call at 20 rows and 20 columns.
To set the floor dimensions when running the program from the command line, you’ll need to pro-
cess command-line arguments. Example 4.16 gives the modified main.py module.

4.16 main.py (process command-line arguments)
1 """Serves as the point of entry to the Robot Rat Application.
2
3 Date: 31 December 2022
4 Project: Robot Rat
5 Student: Rick Miller
6 Class: IT-566: Computer Scripting Techniques
7 """
8
9 from robotrat_app import RobotRatApp
10 import argparse
11
12 def main():
13 parser = argparse.ArgumentParser(description='Set floor dimensions \
14 from command-line.')
15 parser.add_argument('rows', metavar='N', type=int, help='Number of rows')
16 parser.add_argument('cols', metavar='N', type=int, help='Number of columns')
17 args = parser.parse_args()
18 robot_rat_app = RobotRatApp(args.rows, args.cols)
19 robot_rat_app.start_application()
20
21
22 if __name__ == '__main__':
23 main()
24

Referring to example 4.16 — On line 10, I import the argparse module. Next, in the body of
the main() method, I create an ArgumentParser and then, on lines 15 and 16, I add two arguments,
one named rows and the other cols. On line 17, a call to the parser.parse_args() method
assigns the arguments read from the command line to the args variable. On line 18, I use the args
variable to set the RobotRatApp() constructor arguments as shown in the code.

The argparse module provides a ton of great features right out of the box, like automatic string
to numeric conversion, automatically generated help and command-line error messages. Figure 4-

Chapter 4: Project Walkthrough Final Considerations

Computer Scripting Techniques with Python © 2023 Pulp Free Press 177

0
0
0
0
0
1
0
0

23 shows how the automatically generated help looks in a Git Bash terminal along with how a 20
x 40 floor looks when printed to a command-prompt terminal.

Summary

When you’re unsure of how to start a software development project, use the project-approach
strategy to get organized and maintain a sense of forward momentum. Avoid the mistake of trying
to write code before you’ve clarified application requirements, studied programming language
features, created a high-level design, and given some thought to an implementation plan.

Figure 4-23: Above, Getting Help with -h Argument in Git Bash - Below, a 20 x 40 in Command-Prompt

Final Considerations Chapter 4: Project Walkthrough

178 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
0

Apply the software development cycle iteratively or in sprints. Don’t try to code the whole
application all at once. Instead, plan a little, code a little, test a lot, and refactor the code as neces-
sary until you converge upon a solution.

Thorough analysis will yield insights into potential solution approaches. You may not know
how, at first, to solve a particular coding problem. When this happens, get up from your desk and
take a break. Walking is a great way get some exercise and to unleash your mind’s subconscious
problem-solving power a problem.

Dedicate time at the start of the software development cycle to complete activities that pave
the way for overall project success. This time can be formally allocated in a planning sprint, also
referred to as Sprint 0 (Zero).

During software development you may accumulate technical debt. Dedicate a sprint (or two)
to address outstanding technical debt before it becomes too overwhelming.

Clearing a terminal window from Python code is about the least cross-platform thing you can
try to do. Use the os module to determine the name of the operating system and call the appropri-
ate command.

Use the argparse module to parse command-line arguments.

Skill-Building Exercises

1. Experiment with the Code: Clone the book’s repository, step through each of the Robot Rat
application development sprints, and run the code. Experiment by making changes and observ-
ing the effects. Don’t worry about breaking things. You can always delete your local copy and
re-clone the repository. The goal of this activity is for you to gain a complete understanding of
how the code works

2. Lists and Tuples: Read Chapter 14: Lists & Tuples. The Robot Rat application uses a two-
dimensional array of boolean types (True/False) to indicate marked and unmarked floor cells.
Could an array of characters have worked? What changes to the code would you have to make
to use characters verses boolean types? What’s the difference between a list and a tuple? Where
in the Robot Rat application are tuples used? (Hint: print_floor() method.) Can you find
more?

3. For Statement: A set of nested for statements are used to step through the two-dimensional
floor array in the print_floor() method. Why was it necessary to change from implicit itera-
tion to using the enumerate() function? What type of object does the enumerate() function
return?

4. Enumerated Types: Research the enum.py module and the Enum class. What functionality
does extending the Enum class provide to derived classes?

5. Match Statement: Research the match statement. Compare it to nested if/elif/else state-
ments. Which do you prefer?

6. Classes: Read Chapter 17: Classes, and Chapter 18: Inheritance. In your opinion, do you think

Chapter 4: Project Walkthrough Final Considerations

Computer Scripting Techniques with Python © 2023 Pulp Free Press 179

0
0
0
0
0
1
0
0

placing the Robot Rat application code in a class aided or hindered your understanding and
comprehension of the code?

7. Agile Methodology: Research the Agile Methodology and compare it to the development pro-
cess followed in this chapter? In your opinion do you think working in sprints is helpful to an
individual programmer or a hindrance?

8. Type Hinting: Research type hinting and add it to the final version of the RobotRatApp class.

Suggested Projects

1. Diagonal Movement: Revisit the Robot Rat project and implement diagonal movement. Cur-
rently there are four valid directions: NORTH, SOUTH, EAST, and WEST. Add the following
diagonal directions: NORTH-EAST, NORTH-WEST, SOUTH-EAST, and SOUTH-WEST.
Modify the move_forward() method to support the diagonal movement directions.

2. Random Direction: Add a feature to the Robot Rat project that allows a user to move in a ran-
dom direction.

3. Movement Recording And Playback: Read Chapter 16: File I/O, and implement a feature in
the Robot Rat application that enables a user to record and playback robot rat movements.
Movement details should be saved to and read from a file. Save movement data in JSON for-
mat. Movement data should include starting position, pen up and pen down events, direction
changes, and spaces moved.

4. Validate Row And Column Dimensions: In its current state, a user can launch the Robot Rat
application with negative row and column values. Edit the main.py module to ensure row and
column values are non-negative and that the minimum row and column dimension is five.

5. Set Starting Position And Direction: Modify the Robot Rat application to allow a user to
specify the Robot Rat’s starting position and direction when launching the application from the
command line.

6. Launch Application With __debug__ False: By default, the built-in constant __debug__ is
set to True when an application is launched from the command line. Research the __debug__
constant and figure out how to launch the Robot Rat application with __debug__ set to False
to suppress the program’s debug messages.

7. Print Floor After Every Move: Modify the Robot Rat application so that it prints the floor
after each move. Better yet, enable the user to turn this feature on and off.

8. Directional Indicators: Currently, the Robot Rat’s position on the floor is marked with an 'X'.
Modify the print_floor() method to display a different character based on which way the
critter is facing. (Hints: You could use the following characters: <, >, ^, v, or research special

Final Considerations Chapter 4: Project Walkthrough

180 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
0

Unicode characters.

Self-Test Questions

1. What’s the purpose of the project-approach strategy?

2. Explain in your own words why the software development cycle should be executed in sprints.

3. List and describe the Project Approach Strategy areas of concern.

4. List and describe the phases of the software development cycle.

5. What’s the purpose of method stubbing?

6. What’s the purpose of a state transition diagram?

7. What’s the difference between a function and a method?

8. What’s the purpose of the __init__() method?

9. What’s the default value of the built-in __debug__ constant?

10. What’s the purpose of the argparse.py module?

References

Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley, Reading,
Massachusetts, 2000. ISBN 201-61641-6

Python Documentation, https://www.python.org/doc/

Agile Manifesto, https://agilemanifesto.org

Atlassian Jira, https://www.atlassian.com/software/jira

What is Scrum?, Scrum.org, https://www.scrum.org/resources/what-is-scrum

argparse Module, https://docs.python.org/3/library/argparse.html

https://www.python.org/doc/
https://agilemanifesto.org
https://www.atlassian.com/software/jira
https://www.scrum.org/resources/what-is-scrum
https://docs.python.org/3/library/argparse.html

Chapter 4: Project Walkthrough Final Considerations

Computer Scripting Techniques with Python © 2023 Pulp Free Press 181

0
0
0
0
0
1
0
0

Notes

Final Considerations Chapter 4: Project Walkthrough

182 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
0

	Ch-4: Project Walkthrough
	2 Software Development Cycle
	2.1 Relationship To Agile Software Development

	3 Project Specification
	3.1 Analyzing The Project Specification
	3.1.1 Application Requirements
	3.1.2 Problem Domain
	Noun - Verb Analysis

	3.1.3 Language Features
	3.1.4 Design
	3.1.4.1 High-Level Software Architecture Diagram
	3.1.4.2 Implementation Approach

	4 Coding The Robot Rat Application
	4.1 Planning — Sprint 0
	4.1.1 Activities
	4.1.1.1 Create Repository in GitHub
	4.1.1.2 Identify Local Projects Directory
	4.1.1.3 Clone Repository
	4.1.1.4 Create Robot Rat Project Directory
	4.1.1.5 Add README.md File
	4.1.1.6 Add .gitignore File
	4.1.1.7 Verify Repository Operations

	4.2 Development — Sprint 1
	4.2.1 Plan
	4.2.2 Code
	4.2.3 Test
	4.2.4 Integrate
	4.2.5 Add, Commit, And Push Changes To Repository
	4.2.6 Refactor
	4.2.7 Parting Thoughts

	4.3 Development — Sprint 2
	4.3.1 Plan
	4.3.2 Code
	4.3.3 Test
	4.3.4 Integrate

	4.4 Development — Sprint 3
	4.4.1 Plan
	4.4.2 Code - First Iteration
	4.4.3 Test - First Iteration
	4.4.4 Code - Second Iteration
	4.4.5 Test - Second Iteration
	4.4.6 Code - Third Iteration
	4.4.7 Test - Third Iteration
	4.4.8 Integrate
	4.4.9 Refactor

	4.5 Development — Sprint 4
	4.5.1 Plan
	4.5.2 Code
	4.5.3 Test

	4.6 Development — Sprint 5
	4.6.1 Plan
	4.6.1.1 State Transition Diagrams
	4.6.1.2 Implementing Move Forward

	4.6.2 Code
	4.6.2.0.1 A Word On Implementation

	4.6.3 Test
	4.6.4 Integrate
	4.6.5 Sprint Retrospective

	4.7 Development — Sprint 6
	4.7.1 Plan
	4.7.2 Code
	4.7.3 Test

	5 Final Considerations
	5.1 Clearing The Terminal Screen
	5.2 Command-Line Parameters

