
Computer Scripting Techniques with Python © 2023 Pulp Free Press 183

0
0
0
0
0
1
0
1

00000101

Ch-5: Computers, Programs, And Algorithms

Learning Objectives
• State the purpose and use of a computer
• Explain in your own words what makes a computer a unique device
• List and describe the four stages of the program execution cycle
• Explain how a computer stores and retrieves programs for execution
• State the difference between a computer and a computer system
• Define the concept of a program from both the human and computer perspective
• State the purpose of main, auxiliary, and cache memory
• Describe how programs are loaded into main memory and executed by a computer
• State the difference between a compiler vs. an interpreter
• State the purpose and use of the Python interpreter
• Describe how Python programs are loaded and executed by the Python interpreter
• Describe what gets stored in the pycache directory
• State the definition of an algorithm

CHAPTER 5
Computers,

Programs, And Algorithms

Chapter 5: Computers, Programs, And Algorithms

184 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
1

Introduction

Computers, programs, and algorithms are three closely related topics that deserve special
attention before you dive deeper into Python. Why? Simply put, computers execute programs and
programs implement algorithms. As a programmer you will live your life in the world of comput-
ers, programs, and algorithms.

As you progress through your studies you will find it helpful to understand what a computer
is, what particular feature makes a computer a truly remarkable device, and how a computer func-
tions from a programmer’s point of view. You will also find it helpful to know how humans view
programs and how human-readable program instructions are translated into computer-executable
form.

Next, it will be imperative for you to thoroughly understand the concept of an algorithm and
to understand how good and bad algorithms ultimately affect program performance.

Finally, I will show you how Python programs are transformed into bytecode and executed by
the Python runtime.

Armed with a deeper understanding of computers, programs, and algorithms, you’ll be better
informed and able to write better software.

1 What Is A Computer?

A computer is a device whose function, purpose, and behavior is prescribed, controlled, and
changed via a set of stored instructions. A computer can also be described as a general-purpose
machine. One minute a computer may function as a word processor or page-layout machine, and
the next minute it may function as a digital canvas for an artist. This functionality is implemented
as a series of instructions. Indeed, in each case the only difference between the computer function-
ing as a word processor and the same computer functioning as a digital canvas is in the set of
instructions the computer executes. This is what makes a computer a truly remarkable device —
it’s a changeable machine.

1.1 Computer vs. Computer System

Due to the ever-shrinking size of the modern computer, it is often difficult to separate the con-
cept of a computer from the computer system in which it resides and it doesn’t help that the term
computer is used to refer to a complete system, like a laptop, and to the processor that powers it.
As a programmer, you will be concerned with both.

You will need to understand issues related to the particular processor that powers a computer
system in addition to issues related to the computer system as a whole. Luckily though, you can
be extremely productive armed with only a high-level understanding of each. Ultimately, I highly
recommend spending the time required to get intimately familiar with how your computer oper-
ates. In this chapter I use my personal Apple MacBook Pro® 16-inch laptop with an M1 Max pro-
cessor as an example but the concepts are the same for any computer or computer system.

Chapter 5: Computers, Programs, And Algorithms

Computer Scripting Techniques with Python © 2023 Pulp Free Press 185

0
0
0
0
0
1
0
1

1.1.1 Computer System

My Apple MacBook Pro laptop is pictured in figure 5-1.

Referring to figure 5-1 — An essential element of any respectable laptop is a tricked-out lid.
Strangely enough, I also sign my laptops and write “Signature Model” under my initials. I then
dive into my collection of cool stickers obtained from various things I’ve purchased over the
years like guitar pedals (TC Electronics) or Peak Design camera gear, discontinued code editors
(Atom), companies I’ve worked at (IronNet Cybersecurity), and various conferences I’ve
attended (AWS re:Invent). (A big shout-out to my dear friend Tri Nguyen, who offered me his most
awesome collection of stickers to choose from when I was running low!)

The computer system comprises the laptop body with built-in keyboard, trackpad, speakers,
display, camera, microphones, and various ports along either side of the laptop body to interface
with external peripheral devices. Radio transmitters and receivers are included to connect to wire-
less networks and Bluetooth devices. The computer system also includes any operating system or
utility software required to make all the components work together. This laptop runs the latest ver-
sion of macOS.

The laptop body houses the system unit or system board and other components. To see inside
the laptop you need to remove the back cover. The laptop’s internal components are shown in fig-
ure 5-2.

Referring to figure 5-2 — The system unit contains the battery system, which occupies quite a
lot of space as you can see. It has a total of 8 terabytes of SSD flash memory storage and a robust

Figure 5-1: Typical Apple Mac Pro Computer System

Lots of Stickers!

Keyboard

Trackpad

Display

Speakers

Camera

Microphones

Ports
(both sides)

https://www.peakdesign.com
https://reinvent.awsevents.com
https://www.apple.com/macos
https://tcelectronic.com
https://www.linkedin.com/search/results/all/?heroEntityKey=urn%3Ali%3Afsd_profile%3AACoAAAFQpv0BhJ8Avf4uPjmGPN_MSNlR42sxqJc&keywords=tri%20nguyen&origin=RICH_QUERY_SUGGESTION&position=0&searchId=cf9820c2-16b3-40f7-b077-9160d392b6f5&sid=4s6

Chapter 5: Computers, Programs, And Algorithms

186 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
1

cooling system which consists of two turbine-style fans and a cooling tunnel that moves cooled
air across the main processor housing. Let’s zoom in on the processor unit.

1.1.2 Processor

Figure 5-3 shows a close-up x-ray view of the main processor unit.

Figure 5-2: Apple MacBook Pro 16-Inch M1 Max Laptop System Internals
Battery System

Flash Memory
4 Terabytes

Flash Memory
4 Terabytes

Cooling Fan Cooling Fan

Cooling TunnelProcessor Unit & Main Memory

Speakers Speakers

Figure 5-3: X-Ray View of Main Processor Unit

Chapter 5: Computers, Programs, And Algorithms

Computer Scripting Techniques with Python © 2023 Pulp Free Press 187

0
0
0
0
0
1
0
1

Referring to figure 5-3 — Underneath the main processor unit cover and cooling tunnel sits
the main processor package. Diving deeper with our x-ray machine we can see beneath the pack-
aging and make out the Apple M1 Max processor System-on-a-Chip or SoC as shown in figure 5-
4.

Referring to figure 5-4 — The large pale square in the center of the SoC is the main process-
ing unit. The four darker squares are 64 gigabytes of main memory servicing the processor via
Apple’s Unified Memory Architecture or UMA. Figure 5-5 zooms in closer to the M1 Max SoC.

Figure 5-4: Apple M1 Max Processor System-on-a-Chip (SoC) Die

Figure 5-5: Apple M1 Max® SoC Block Diagram (Notional)

Chapter 5: Computers, Programs, And Algorithms

188 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
1

Referring to figure 5-5 — The M1 Max SoC contains a 10-core Central Processing Unit
(CPU) with 8 performance cores (Firestorm® P-cores) and 2 efficiency cores (Icestorm® E-
cores), a 32-core Graphics Processing Unit (GPU), and a 16-core Neural Engine (Neural Process-
ing Unit or NPU). (Firestorm and Icestorm sound like characters from an X-Men movie.) In addi-
tion, it incorporates hardware accelerated video processing, encode, and decode engines. (See
Apple’s M1 Max technical specifications for more details.)

Main (unified) memory is shared between processing units, which significantly speeds mem-
ory access for image, video, and machine learning tasks. In addition to main memory, the M1
Max chip contains several levels of on-board cache memory and additional processor cores to off-
load peripheral device communications and other routine processor tasks. This frees up the main
CPU cores for serious computational tasks. Needless to say, this is a powerful processor for a lap-
top by any measure.

1.2 Three Aspects of Processor Architecture

There are three aspects of processor architecture programmers should be aware of: feature set,
feature set implementation, and feature set accessibility.

1.2.1 Feature Set

A processor’s feature set derives from its design. Can floating point arithmetic be executed in
hardware or must it be emulated in software? Must all data pass through the processor, or can
input/output be handled off-chip while the processor goes about its business? How much memory
can the processor access? How fast can it run? How much data can it process per unit time? A
processor’s design addresses these and other feature-set issues.

1.2.2 Feature Set Implementation

Feature set implementation primarily determines how a processor’s functionality is arranged
and executed in hardware. How does the processor implement the feature set? Is it a Reduced
Instruction Set Computer (RISC) or a Complex Instruction Set Computer (CISC)? Is it supersca-
lar and pipelined? Does it use Out-of-Order instruction execution? Does it have a vector execu-
tion unit? Is the floating-point unit on the chip with the processor, or does it sit off to the side? Is
the super fast cache memory part of the processor, or is it located on another chip? Is it a multi-
core processor? If so, does it support hyperthreading? If not, how does it support multiple threads
of execution? These questions all deal with how processor functionality is achieved and how its
design is executed.

1.2.3 Feature Set Accessibility

Feature set accessibility is the aspect of a processor’s architecture you are most concerned
with as a programmer. Processor designers make a processor’s feature set available to program-
mers via the processor’s instruction set. A valid instruction in a processor’s raw instruction set is a
set of voltage levels that, when decoded by the processor, have special meaning. A high voltage is
usually translated as “on” or “1”, and a low voltage is usually translated as “off” or “0”. A set of
on-and-off voltages is conveniently represented to humans as a string of ones and zeros. Instruc-
tions in this format are generally referred to as machine instructions or machine code. As proces-

https://support.apple.com/kb/SP858?locale=en_US

Chapter 5: Computers, Programs, And Algorithms

Computer Scripting Techniques with Python © 2023 Pulp Free Press 189

0
0
0
0
0
1
0
1

sor power increases, the size of machine instructions grows as well, making it extremely difficult
for programmers to deal directly with machine code.

Modern processors, like the M1 Max, implement what’s known as an Instruction Set Architec-
ture or ISA. The ISA is an abstract model of the computer and serves as the programmer’s inter-
face to the processor. How a processor fulfills the contract specified by the ISA is a matter of
implementation.

Below the ISA sits a layer of microcode that’s used to sequence machine code instructions.
Microcode is closely associated with the hardware in that it is burned into the chip itself or into
EPROM (Erasable Programmable Read-Only Memory) and can be updated or patched. This is
usually done to fix bugs detected in a processor after release.

1.2.4 From Machine Code To Assembly Language

To make a processor’s instruction set easier for humans to understand and work with, each
machine instruction is represented symbolically in a set of instructions referred to as assembly
language. To the programmer, assembly language represents an abstraction layer between pro-
grammer and machine intended to make the act of programming more efficient. Programs written
in assembly language must be translated into machine instructions before execution. A program
called an assembler translates assembly language into machine code.

Although assembly language is easier to work with than machine code, it requires a lot of
effort to crank out an assembly language program. Assembly language programmers must busy
themselves with issues like register usage and stack conventions. If you can program in assembly,
you understand computer architecture.

High-level programming languages add yet another layer of abstraction. Python, with its
object-oriented language features, lets programmers think in terms of solving the problem at
hand, not in terms of the machine code it’s ultimately executing. You will, however, need to be
concerned with GPUs and Neural Engines, especially if you’re doing graphics or machine learn-
ing programming

1.2.5 How This Relates To The Apple M1 Max

The M1 Max is more than just a processor. It is, as you learned earlier, a System-on-a-Chip
with a CPU, GPU, Neural Engine, and many more supporting services. The supporting services
you can often ignore when programming, but to take full advantage of the processor’s capabili-
ties, you’ll need to consider how your code will run on the CPU, the GPU, and the Neural Engine.
The CPU offloads processing tasks to these specialized units as long as the code is written to take
advantage of them. Apple provides libraries and tools to help developers target the M1 architec-
ture. These include the Metal Shading Language (MSL) for the GPU and Core ML and Core ML
Tools for the Neural Engine.

Quick Review

A computer is a changeable machine. It’s behavior is controlled by a set of instructions called
a program. It’s often difficult for novices to separate the notion of a computer system from the
chip upon which the computer actually resides.

A computer system includes a system unit or housing, display, keyboard, mouse or trackpad,
speakers, camera, microphone, and other peripheral devices. The system unit houses various

https://developer.apple.com/documentation/metalperformanceshaders
https://developer.apple.com/documentation/coreml
https://github.com/apple/coremltools
https://github.com/apple/coremltools
https://www.google.com/search?q=%22Instruction+Set+Architecture%22
https://www.google.com/search?q=%22Instruction+Set+Architecture%22

Memory Organization Chapter 5: Computers, Programs, And Algorithms

190 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
1

internal components including a power supply and/or battery, antennas for WiFi and Bluetooth,
cooling fans, and a system board which contains the processor housing.

The real work of a computer system is performed by its processor. Modern computer systems
have complex processors that are themselves considered a System-on-a-Chip (SoC). The Apple
M1 Max is an SoC that contains a Central Processing Unit (CPU), Graphics Processing Unit
(GPU) and a Neural Engine or Neural Processing Unit (NPU) supported by a Unified Memory
Architecture (UMA) connected via a high-speed data transfer Fabric.

It’s not enough to simply target the CPU with general program code. To gain full advantage of
modern SoC processors requires optimized code. Apple provides Metal Shading Language (MSL)
for the GPU and Core ML and Core ML Tools for the Neural Engine.

2 Memory Organization

Most modern computers share similar memory systems design. As a programmer, you should
be aware of how computer memory is organized and accessed. The best way to learn how your
computer works is to poke around in memory and see what’s in there for yourself. This section
provides a brief introduction to computer memory concepts to help get you started.

2.1 Memory Basics

A computer’s memory stores information in the form of electronic voltages. There are two
general types of memory: volatile and non-volatile. Volatile memory stores data as long as it has
power. It will lose stored data if power is removed for any length of time. Main memory and
cache memory, two forms of random access memory (RAM), are examples of volatile memory.
Read-only memory (ROM) and auxiliary storage devices such as Blu-ray disks, CD-ROMs,
DVDs, hard disk drives, USB flash drives, floppy disks, SD cards. and tapes are examples of non-
volatile memory. Non-volatile memory stores data indefinitely, even when power is removed.

2.1.1 Memory Hierarchy

Computer systems contain several different types of memory. These memory types range
from slow and cheap to fast and expensive. The proportion of slow and cheap memory to fast and
expensive memory can be viewed in the shape of a pyramid commonly referred to as the memory
hierarchy as shown in figure 5-6.

The job of a computer system designer with regards to memory subsystems is to make them
perform as if all the memory they contained were fast and expensive. They use cache memory to
store frequently used data and instructions close to the processor, and buffer disk reads into mem-
ory to give the appearance of faster disk access. Figure 5-7 shows a block diagram of the different
types of memory used in a typical computer system.

Chapter 5: Computers, Programs, And Algorithms Memory Organization

Computer Scripting Techniques with Python © 2023 Pulp Free Press 191

0
0
0
0
0
1
0
1

During program execution, the faster cache
memory is searched first by the processor for
any requested data or instructions. If it’s not
there, a performance penalty occurs in the form
of longer overall access times required to
retrieve the information from a slower memory
source. (A cache miss.) As chip densities grow,
more cache memory is co-located on the proces-
sor chip, thus improving overall processing
times. The M1 Max processor hosts multiple
levels of processor and system cache memory
within the SoC.

2.1.2 Bits, Bytes, Words

Program code and data are stored in main
memory as electronic voltages. Since I’m talking
about digital computers, the voltage levels repre-
sent two discrete states depending on the level. Usually, low voltages represent no value, off, or 0,
while a high voltage represents on, or 1.

When data is stored on auxiliary memory devices, electronic voltages are translated into either
electromagnetic fields (tape drives, floppy and rotating hard disks), stored voltage states (NAND
flash memory solid state drives (SSDs)), or bumps that can be detected by laser beam (CDs,
DVDs, etc.)

2.1.2.1 Bit

The bit represents one discrete piece of information stored in a computer. On most modern
computer systems bits cannot be individually accessed from memory. However, after the byte to

Figure 5-6: Memory Hierarchy Pyramid Showing Cost vs. Speed

Figure 5-7: Simplified Memory Subsystem Diagram

What Is A Program? Chapter 5: Computers, Programs, And Algorithms

192 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
1

which a bit belongs is loaded into a processor register, the byte can be manipulated to access a
particular bit.

2.1.2.2 Byte

A byte contains 8 bits. Most computer memory is byte addressable, although as processors
become increasingly powerful and can manipulate wider memory words, loading bytes by them-
selves into the processor becomes increasingly inefficient. For that reason, the fastest memory
reads can be done a word at a time.

2.1.2.3 Word

A word is a collection of bytes. The number of bytes that comprise a word is computer-system
dependent. If a computer’s data bus is 64 bits wide and its processor’s registers are 64-bits wide,
then the word size would be 8 bytes long (64 bits / 8 bits = 8 bytes). Bigger computers will have
larger word sizes. This means they can manipulate more information per unit time than a com-
puter with a smaller word size.

Quick Review

Computer systems contain a mix of fast, expensive memory, and slow, inexpensive memory.
Computer system designers must balance the use of each type of memory and structure the mem-
ory sub-system in a way that makes the computer perform as if the entire system was filled with
fast, expensive memory.

Cache memory is high-speed memory located close to the processor. Modern processors con-
tain level 1, 2, and 3 cache either on the same chip as the processor core, or within the same pro-
cessor package.

A program must be fetched from auxiliary storage and loaded into main memory prior to exe-
cution. Recently accessed instructions and data are stored in cache memory for faster retrieval. A
cache hit occurs when the processor finds what it’s looking for in the cache. Conversely, if the
required data or instruction is not found in the cache, a cache miss occurs instead, delaying pro-
gram execution while the processor waits while the needed data is fetched from slower main
memory.

A bit represents a voltage within the processor and is either on or off. A 1 represents on; a 0
represents off. A series of eight bits is called a byte. Multiple bytes together represent a word, and
the length of a word is dictated by the type of processor and width of the memory bus. A 64-bit
computer would have a word size of 64 bits or 8 bytes. Memory is read into the processor a word
at a time.

3 What Is A Program?

Intuitively you already know the answer to this question. A program is something that runs on
a computer. This simple definition works well enough for most purposes, but as a programmer
you will need to arm yourself with a better understanding of exactly what makes a program a pro-
gram. In this section I discuss programs from two perspectives: the computer and the human. You

Chapter 5: Computers, Programs, And Algorithms What Is A Program?

Computer Scripting Techniques with Python © 2023 Pulp Free Press 193

0
0
0
0
0
1
0
1

will find this information extremely helpful and it will tide you over until you take a formal
course on computer architecture.

3.1 Two Views of a Program

A program is a set of programming language instructions plus any data the instructions act
upon or manipulate. This is a reasonable definition if you are a human, but if you are a processor,
it will just not fly. That’s because humans are great abstract thinkers and computers are not, so it is
helpful to view the definition of a program from two points of view.

3.1.1 The Human Perspective

Humans are the masters of abstract thought; it is the hallmark of our intelligence. High-level,
object-oriented languages give us the ability to analyze a problem abstractly and symbolically
express its solution in a form that is both understandable by humans and readable by other pro-
grams. By other programs, I mean the code a programmer writes must be translated from source
code instructions into machine instructions recognizable by a particular processor. This transla-
tion is performed by running a compiler that converts the high-level language code into object
code that targets a particular processor. The object code must then be transformed in such a way
that it can be loaded from auxiliary memory into main memory for execution. Programming lan-
guages that are compiled into object code targeting specific processors are said to be close to the
metal. These include languages like Fortran, C, C++, Haskell, Rust, and Go just to name a few.

Programming languages like Java, C#.Net, and Python are compiled into an intermediate lan-
guage or bytecode that is then executed in a virtual machine runtime environment. For Java and
C# the compilation step is separate and distinct from the execution step. The Python interpreter
reads source files and compiles them into bytecode as part of the execution process. I’ll talk more
about this later.

To a programmer using a high-level programming language like Python, a program is a col-
lection of classes that model the behavior of real-world objects in a particular problem domain.
These classes model object behavior by defining object attributes (data) and methods to manipu-
late these attributes. On an even higher level, a program can be viewed as an interaction between
objects. Functional programming adds its own twist on taming conceptual complexity. This view
of a program is convenient for humans.

3.1.2 The Computer Perspective

From a computer’s perspective, a program is simply machine instructions and data. Usually
both the instructions and data reside in the same memory space. This is referred to as a Von Neu-
mann architecture. In order for a program to run, it must first be loaded into main memory. The
processor must then fetch the address of the first instruction, at which point execution begins. In
the early days of computing, programs were coded into computers by hand and then executed.
Nowadays, all the nasty details of loading programs from auxiliary memory into main memory
are handled by an operating system — which, by the way, is a program.

Since both instructions and data reside in main memory, how does a computer know when it is
dealing with an instruction or with data? The answer to this question will be discussed in detail
shortly, but here’s a quick answer: it depends on what the computer is expecting. If a computer
reads a memory location expecting to find an instruction and it does, everything runs fine. The

The Processing Cycle Chapter 5: Computers, Programs, And Algorithms

194 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
1

processor decodes and executes the instruction. If it reads a memory location expecting to find an
instruction but instead finds garbage, then the decode fails and causes an error! Ever seen the blue
screen of death in older Microsoft Windows operating systems? Modern operating systems avoid
such catastrophic system failures by running application processes in dedicated memory spaces.
An application crash may kill the application but will not affect other applications running on the
processor.

Quick Review

A program is a set of programming language instructions plus any data the instructions act
upon or manipulate.

To a programmer using a programming language like Python, a program is a collection of
classes that model the behavior of objects in a particular problem domain. These classes model
object behavior by defining object attributes (data) and methods to manipulate these object attri-
butes. On an even higher level, a program can be viewed as an interaction between objects.

From a computer’s perspective, a program is simply machine instructions and data. Usually
both the instructions and data reside in the same memory space.

4 The Processing Cycle

Computers are powerful because they can
do repetitive things really fast. When a com-
puter executes a program, it constantly repeats a
series of processing steps commonly referred to
as the processing cycle. The processing cycle
consists of four primary steps: Instruction
Fetch, Instruction Decode, Instruction Execu-
tion, and Result Store. The step names can be
shortened to simply Fetch, Decode, Execute,
and Store. Different types of processors imple-
ment the processing cycle differently, but gener-
ally all processors carry out these four
processing steps in some form or another. The
processing cycle is depicted in figure 5-8.

4.1 Fetch

In the Fetch step, the processor reads an
instruction from memory and presents it to the decode section. If cache memory is present, it is
checked first. Most modern processors have multiple levels of cache and separate caches for
instructions and data. If the requested memory address contents resides in the cache, the read
operation executes quickly (a cache hit), otherwise, the processor must wait while the data is
loaded from the next level cache or from slower main memory (a cache miss). A well-designed
memory subsystem minimizes processor wait times and employs various memory access predic-
tion algorithms to maximize cache hits and minimize cache misses.

Figure 5-8: Processing Cycle

Chapter 5: Computers, Programs, And Algorithms Algorithms

Computer Scripting Techniques with Python © 2023 Pulp Free Press 195

0
0
0
0
0
1
0
1

4.2 Decode

In the Decode step, the fetched instruction is translated into voltages that set-up the com-
puter’s circuits for the particular operation at hand. If the computer thinks it is getting an instruc-
tion but instead gets garbage, there will be problems. A computer system’s ability to recover from
such situations is generally the function of a robust operating system.

4.3 Execute

If the fetched instruction is successfully decoded as a valid instruction in the processor’s
instruction set, it executes. A computer is a bunch of electronic switches. Executing an instruction
means the computer’s electronic switches are turned either on or off to carry out the actions
required by a particular instruction. Different instructions cause different sets of switches to be
turned on or off. Instruction execution speed is a function of processor design and system clock
speed.

4.4 Store

When an instruction executes, the results, if any, must be stored somewhere. Most arithmetic
instructions leave the result in one of the processor’s onboard registers. Memory-write instruc-
tions would then be used to transfer these results to main memory. Keep in mind that there is only
so much storage space inside a processor. At any given time, almost all data and instructions
reside in main or cache memory and are only loaded into the processor when needed.

4.5 Why A Program Crashes

Notwithstanding catastrophic hardware failure, a computer crashes or locks up because what
it expects to be an instruction is not. The faulty instruction loaded from memory turns out to be an
unrecognizable string of ones and zeros. When it fails to decode into a proper instruction, the
computer halts because of improper switch alignment.

Quick Review

Computers are powerful because they can do repetitive things really fast. When a computer
executes a program, it constantly repeats a series of processing steps commonly referred to as the
processing cycle. The processing cycle consists of four primary steps: Instruction Fetch, Instruc-
tion Decode, Instruction Execution, and Result Store. The step names can be shortened to simply
Fetch, Decode, Execute, and Store.

5 Algorithms

Computers run programs; programs implement algorithms. A good working definition of an
algorithm for the purpose of this book is a recipe for getting something done on a computer. Pretty
much every line of source code you write is considered part of an algorithm. What I’d like to do in
this brief section is to make you aware of the concept of good vs. better algorithms.

Algorithms Chapter 5: Computers, Programs, And Algorithms

196 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
1

5.1 Good vs. Better Algorithms

There are good ways to do something in source code and there are better ways to do the same
exact thing. A good example of this can be found in the act of sorting. Suppose you want to sort in
ascending order the following list of integers:
1, 10, 7, 3, 9, 2, 4, 6, 5, 8, 0, 11

One algorithm for sorting these integers might go something like this:
Step 1: Select the first integer position in the list
Step 2: Compare the selected integer with its immediate neighbor
Step 2.1: If the selected integer is greater than its neighbor, swap the two integers
Step 2.2: Else, leave it where it is
Step 3: Continue comparing the selected integer position with all other integers repeating

steps 2.1 - 2.2
Step 4: Select the second integer position on the list and repeat the procedure beginning at step

2
Continue in this fashion until all integers have been compared to all other integers in the list

and have been placed in their proper position.
This algorithm is simple and straightforward. It also runs pretty fast for small lists of integers,

but it slows down as the list of items to be sorted grows longer. Another sorting algorithm to sort
a list of integers goes as follows:

Step 1: Split the list into two equal sublists
Step 2: Repeat step 1 if any sublist contains more than two integers
Step 3: Sort each sublist of two integers
Step 4: Combine sorted sublists until all sorted sublists have been combined
This algorithm runs a little slow on small lists because of all the list splitting going on, but it

sorts large lists of integers way faster than the first algorithm.

5.1.1 Dumb Sort

The first algorithm lists the steps for what I call a dumb sort, which is related to a bubble sort,
but makes extra naive element comparisons. Example 5.1 gives the source code for a short pro-
gram that implements the dumb sort algorithm.

5.1 dumbsort.py
1 """Dumb Sort Algorithm Implementation."""
2
3 import time
4 import random
5
6 class DumbSort():
7
8 def run(self, int_list):
9 innerloop = 0
10 outerloop = 0
11 swaps = 0
12
13 t_start = time.perf_counter()
14 for i in range(len(int_list)):
15 outerloop += 1
16 for j in range(1, len(int_list)):
17 innerloop += 1

Chapter 5: Computers, Programs, And Algorithms Algorithms

Computer Scripting Techniques with Python © 2023 Pulp Free Press 197

0
0
0
0
0
1
0
1

18 if int_list[j-1] > int_list[j]:
19 temp = int_list[j-1]
20 int_list[j-1] = int_list[j]
21 int_list[j] = temp
22 swaps += 1
23 t_stop = time.perf_counter()
24 sort_time = t_stop - t_start
25
26 return (int_list, outerloop, innerloop, swaps, sort_time)
27
28
29 def main():
30 ds = DumbSort()
31 list_1 = [1,10,7,3,9,2,4,6,5,8,0,11]
32 print(f'Dumb sorting {len(list_1)} integers. Don\'t blink!')
33 (sorted_list, outerloop, innerloop, swaps, sort_time) = ds.run(list_1)
34 print(f'Outerloop: {outerloop}')
35 print(f'Innerloop: {innerloop}')
36 print(f'swaps: {swaps}')
37 print(f'time: {sort_time:0.8f}')
38 print()
39 list_2 = [0,1,2,3,4,5,6,7,8,9,10,11]
40 (sorted_list, outerloop, innerloop, swaps, sort_time) = ds.run(list_2)
41 print(f'Outerloop: {outerloop}')
42 print(f'Innerloop: {innerloop}')
43 print(f'swaps: {swaps}')
44 print(f'time: {sort_time:0.8f}')
45 print()
46 list_3 = [11,10,9,8,7,6,5,4,3,2,1,0]
47 (sorted_list, outerloop, innerloop, swaps, sort_time) = ds.run(list_3)
48 print(f'Outerloop: {outerloop}')
49 print(f'Innerloop: {innerloop}')
50 print(f'swaps: {swaps}')
51 print(f'time: {sort_time:0.8f}')
52 print()
53
54 unsorted_ints = [random.randint(0, 10000) for _ in range(20000)]
55 print(f'Dumb sorting {len(unsorted_ints):,} \
56 randomly-generated integers. This may take a while. Know any good jokes?')
57 (sorted_list, outerloop, innerloop, swaps, sort_time) = ds.run(unsorted_ints)
58 print(f'Outerloop: {outerloop:,}')
59 print(f'Innerloop: {innerloop:,}')
60 print(f'swaps: {swaps:,}')
61 print(f'time: {sort_time:0.8f}')
62
63
64 if __name__ == '__main__':
65 main()
66

Referring to example 5.1 — The main dumb sort algorithm is implemented on lines 14
through 22. The rest is fluff, preparation, and metrics. When sorting completes, the run() method
returns a tuple consisting of five items: sorted_list, outerloop, innerloop, swaps, and
sort_time. I calculate the sort time with the help of the time.perf_counter() function. I calcu-
late the sort time in the body of the run() method because I want to measure elapsed time as close
to the sort algorithm implementation as possible so that I don’t measure things like the time it
takes to call the run() method itself, or the print() methods, etc.

Algorithms Chapter 5: Computers, Programs, And Algorithms

198 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
1

Referring to the main() method — I first create a DumbSort object and assign it to the vari-
able named ds. I create a list of 12 integers in no particular order, sort it, and report the results. I
repeat this two more times, once with the list completely ordered in ascending order and again
with the list completely unsorted. Finally, on lines 54 through 61, I generate a list of 20,000 ran-
dom integers, sort it, and report the results.

To run the bubblesort.py program, clone the book’s code repository, launch a terminal, navi-
gate to the chapter05/dumbsort directory and use the appropriate python command for your sys-
tem. I’m running macOS so I use the python3 command like so:
python3 -O bubblesort.py

The -O (capital letter O) switch sets the global __debug__ constant to False. To see more
program output metrics launch the program with:
python3 bubblesort.py

Figure 5-9 shows the results of running this program with __debug__ set to False.

Referring to figure 5-9 — For a list of twelve integers the outer loop executes 12 times and the
inner loop executes 132 times. The first list required 30 swaps to put things in sorted order. The
second list, which was already sorted, required zero swaps, while the third list required 66 swaps.
Note that each list contained twelve integers which is why the inner loops and outer loops execute
the same number of times for each of the three 12-item lists. The number 132 comes from the
number of times the outer loop needs to execute (12) times the number of times the inner loop
needs to execute (12 - 1 = 11) for (12 x 11) = 132. This equates to roughly N x N where N is the
number of elements in the list. For the list of 20,000 integers, the inner loop must execute 20,000
x 19,999 = 399,980,000 or ~400K times. Each comparison and swap takes constant time which
does consume time but as the number of elements that need to be sorted grows, the dominating
factor in determining how long the dumb sort code will take to sort a list is determined by the

Figure 5-9: Results of Running the Dumb Sort Program

Chapter 5: Computers, Programs, And Algorithms Algorithms

Computer Scripting Techniques with Python © 2023 Pulp Free Press 199

0
0
0
0
0
1
0
1

number of elements in the list squared or n2. In computer science this is referred to as the asymp-
totic runtime of the algorithm and is expressed in order notation as O(n2). This may seem awful
but at least the dumb sort program runs in polynomial time. It may take a while but it will eventu-
ally sort a big list of items. Let’s look now at the second algorithm discussed earlier.

5.1.2 Merge Sort

The second algorithm described at the beginning of this section is called merge sort. Example
5.2 give the code for an implementation of the merge sort algorithm.

5.2 mergsort.py
1 """Implements merge sort algorithm."""
2
3 import time
4 import random
5
6 class MergeSort():
7
8 def __init__(self):
9 self.callcount = 0
10
11
12 def split(self, intlist, left, right):
13 self.callcount += 1
14
15 if __debug__:
16 print(f'split() call: {self.callcount}')
17 print(intlist)
18 print(f'left: {left}')
19 print(f'right: {right}')
20 input('Press any key to continue...')
21
22 mid = 0
23 sorted_ints = None
24
25 if right > left:
26 mid = int((right + left) / 2)
27 if __debug__:
28 print(f'mid: {mid}')
29 self.split(intlist, left, mid)
30 self.split(intlist, (mid + 1), right)
31 sorted_ints = self.merge(intlist, left, (mid + 1), right)
32
33 return sorted_ints
34
35
36 def merge(self, intlist, left, mid, right):
37
38 temp = [0] * len(intlist)
39 left_end = (mid - 1)
40 temp_pos = left
41 num_elements = (right - left + 1)
42
43 if __debug__:
44 print('merge()...')
45 print(temp)
46
47 while (left <= left_end) and (mid <= right):

Algorithms Chapter 5: Computers, Programs, And Algorithms

200 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
1

48 if intlist[left] <= intlist[mid]:
49 temp[temp_pos] = intlist[left]
50 temp_pos += 1
51 left += 1
52 else:
53 temp[temp_pos] = intlist[mid]
54 temp_pos += 1
55 mid += 1
56
57 while left <= left_end:
58 temp[temp_pos] = intlist[left]
59 temp_pos += 1
60 left += 1
61
62 while mid <= right:
63 temp[temp_pos] = intlist[mid]
64 temp_pos += 1
65 mid += 1
66
67 if __debug__:
68 print(f'num_elements = {num_elements}')
69
70 for i in range(num_elements):
71 intlist[right] = temp[right]
72 right -= 1
73
74 return intlist
75
76
77 def main():
78 ms = MergeSort()
79 short_list = [11,10,9,8,7,6,5,4,3,2,1,0]
80 print(f'Merge sorting {len(short_list)} unsorted integers.')
81 if __debug__:
82 print(short_list)
83 input('Press any key to continue...')
84
85 t_start = time.perf_counter()
86 sorted_list = ms.split(short_list, 0, len(short_list)-1)
87 t_stop = time.perf_counter()
88 sort_time = t_stop - t_start
89 if __debug__:
90 print(sorted_list)
91 print(f'Sort time for {len(short_list)} integers: {sort_time:0.8f} seconds.')
92 print()
93
94 unsorted_ints = [random.randint(0, 10000) for _ in range(20000)]
95 if __debug__:
96 print(unsorted_ints)
97 input('Press any key to continue...')
98
99 print(f'Merge sorting {len(unsorted_ints):,} random integers. \
100 Hold my beer...this won\'t take long.')
101 t_start = time.perf_counter()
102 sorted_ints = ms.split(unsorted_ints, 0, len(unsorted_ints)-1)
103 t_stop = time.perf_counter()
104 sort_time = t_stop - t_start
105 if __debug__:
106 print(sorted_ints)

Chapter 5: Computers, Programs, And Algorithms Algorithms

Computer Scripting Techniques with Python © 2023 Pulp Free Press 201

0
0
0
0
0
1
0
1

107 print(f'Sort time for {len(unsorted_ints):,} integers: \
108 {sort_time:0.8f} seconds.')
109
110
111 if __name__ == '__main__':
112 main()
113

Referring to example 5.2 — If you’re relatively new to programming it can take a while to
wrap your head around what’s happening in the code. First, the split() method calls itself recur-
sively until the list no longer contains enough elements to split, at which point the recursive calls
start to unwind and the merge() method is called to merge each split list. Since the split()
method is a recursive call, the first call to split() on line 29 proceeds down the left half of the
list. Once that series of recursive calls completes, the call to split() on line 30 executes and
recursively splits the right half of the list. It makes more sense if you can see an animation and I
recommend the one here at HackerEarth.com: https://www.hackerearth.com/practice/algorithms/
sorting/merge-sort/visualize/

Referring to the main() method — I start by creating an instance of MergeSort and then cre-
ate a list of 12 unsorted integers to see how long it takes to sort it. Next, on line 94, I create a list
of 20,000 random integers and sort it. Figure 5-10 shows the results of running this program.

Referring to figure 5-10 — Bear in mind that since I’m now timing everything (method calls,
setup, etc.) the reported sort times may skew slightly higher. The key takeaway in the comparison
between dumb sort and merge sort is in how long it takes each to sort the list of 20,000 integers
and you can see that merge sort is 100 times faster. Merge sort’s asymptotic runtime is O(n log n).
For a detailed runtime analysis I refer you to this excellent video: https://www.youtube.com/
watch?v=0nlPxaC2lTw

5.2 Algorithm Runtime Growth Rate

When an algorithm’s running time is a function of the size of its input, the term used to
describe the time it takes to perform its job vs. the size of its input is called the growth rate. Figure
5-11 shows a plot of algorithms with the following growth rates: log n, n, n log n, n2, n3, and nn.

Referring to figure 5-11 — You can see from the chart that dumb sort runs pretty slow and
merge sort performs better. An algorithm with a growth rate of n is said to run in linear time,
while an algorithm with a growth rate of nn is said to have an exponential runtime.

Figure 5-10: Results of Running Merge Sort Program

https://www.hackerearth.com/practice/algorithms/sorting/merge-sort/visualize/
https://www.hackerearth.com/practice/algorithms/sorting/merge-sort/visualize/
https://www.youtube.com/watch?v=0nlPxaC2lTw
https://www.youtube.com/watch?v=0nlPxaC2lTw

How Python Runs Programs Chapter 5: Computers, Programs, And Algorithms

202 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
1

Quick Review

Computers run programs; programs implement algorithms. A good working definition of an
algorithm for the purpose of this book is a recipe for getting something done on a computer. Pretty
much every line of source code you write is considered part of an algorithm.

6 How Python Runs Programs

In this section I want to show you how Python executes programs and modules.

6.1 Python Execution Process

The overall process used by the Python interpreter to execute programs is depicted in figure 5-
12.

Figure 5-11: Algorithmic Growth Rates

log n

n

n log n

n2

n3

nn

Figure 5-12: Python Interpreter Process

Chapter 5: Computers, Programs, And Algorithms How Python Runs Programs

Computer Scripting Techniques with Python © 2023 Pulp Free Press 203

0
0
0
0
0
1
0
1

Referring to figure 5-12 — The upper left section of the diagram shows several ways Python
source files and strings can be loaded into the interpreter for execution. I’ll discuss each of these
in more detail a bit later.

When a plain text Python source file or string is run from the command line or loaded into the
interactive interpreter it is read in and presented to the parser. Any syntax errors present in the
code will cause the parser to exit with a SyntaxError. (See Chapter 3 page 99) Actually, you don’t
need to see Chapter 3 page 99 because if you’re learning to program, you’ll see all sorts of Syn-
taxError messages.

OK, if your code makes it past the parser it goes to the compiler and on to the assembler where
it comes out as bytecode at which point it may be saved to disk as a code object (.pyc) and/or
passed to the evaluation loop for execution.

The lower left section of the diagram shows a code object (.pyc) file being run directly from
the command line. Let’s step through each of these methods of running a python file and note the
results.

6.2 Command-Line Script Execution

You’ve been exposed to this way of executing Python programs from the command line
throughout the book. If a Python script is configured to run as a main module with the now famil-
iar construct...
if __name__ == '__main__':

main()

...you can run it from the command line like so:
python3 -O mergesort.py

In this case I’m executing the mergesort.py script with the -O switch, which, as you learned
earlier, sets the global constant __debug__ to False. Figure 5-13 shows the results.

Referring to figure 5-13 — You’ve seen this earlier in the chapter. When the script completes,
I list the contents of the mergesort directory to show no code object files have been created as a
result of running the script.

Figure 5-13: Command Line Script Execution

How Python Runs Programs Chapter 5: Computers, Programs, And Algorithms

204 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
1

6.3 Pipe Script to Python Command

Another way to run a Python script from the command line is to pipe the output from a com-
mand to the Python interpreter as this code snippet shows:
cat mergesort.py | python3 -O

The cat command normally writes the contents of a file to stdout but the pipe command '|'
redirects the output to the stdin of the python3 command. Figure 5-14 shows the effects of run-
ning this command in a Git Bash terminal on Windows.

Referring to figure 5-14 — Again, this method of running a Python script produces no code
object files.

6.4 Command-Line Module Execution

Some clarification is in order here before proceeding. The mergesort.py file is considered a
script because it can be directly executed by the Python interpreter at the command line. Remem-
ber, when a file is run on the command line via the python or python3 command, its module
__name__ property is implicitly set to '__main__' indicating it is the main module. If instead a
Python source file is intended to be imported by another Python file then it is referred to as a mod-
ule and its __name__ property is set to its filename sans the .py extension. For example, if merge-
sort were imported vs. directly executed then its module __name__ property would be set to
'mergesort'. All Python files loaded into the interpreter are transformed into modules.

6.4.1 Explicitly Setting Module __name__ To '__main__'

The following command will execute a Python module and explicitly set its __name__ prop-
erty to '__main__':
python3 -O -m mergesort

Figure 5-15 shows the results of running this command.
Referring to figure 5-15 — The primary difference between running mergesort as a module

vs. a script is that code object files are generated in the __pycache__ directory. Also, the Python
sys.path is searched. Let’s explore the __pycache__ directory. Figure 5-16 gives the listing.

Figure 5-14: Pipe Python Script To Python Interpreter

Chapter 5: Computers, Programs, And Algorithms How Python Runs Programs

Computer Scripting Techniques with Python © 2023 Pulp Free Press 205

0
0
0
0
0
1
0
1

Referring to figure 5-16 — Executing a module generates Python code object files and stores
them in the __pycache__ directory. A code object file (.pyc) represents a compiled and assem-
bled Python program that can be loaded into the Python interpreter and executed by the Python
runtime. A code file does not contain bytecode in an editable form. In other words, you can’t open
a .pyc file in a text editor and expect to see intelligible bytecode instructions. Modules must be
loaded into the Python interpreter before they can be disassembled. I’ll get to that shortly. First,
let’s execute a code object file.

6.5 Command-Line Code Object File Execution

Code object files represent Python programs that have been parsed, compiled, and assembled
and can be executed without having to go again through all those steps. The purpose of generating
compiled byte code files is to speed up execution of scripts and modules that haven’t changed. If
you do make a change to a script of module source code, it will be recompiled.

To execute a code object file just run it directly with the Python command-line tool like so:

python3 __pycache__/mergesort.cpython-310.opt-1.pyc

Note that if you’re following along, the name of the code file generated when you executed
the module may be different. Just F.Y.I. Figure 5-17 shows the results of running the code file.

Figure 5-15: Command Line Module Execution — Code File Generated

Figure 5-16: __pycache__ Directory Listing

How Python Runs Programs Chapter 5: Computers, Programs, And Algorithms

206 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
1

Referring to figure 5-17 — Note that it was unnecessary to supply the -O switch to set the
__debug__ constant to False because the code file has already been compiled. I’ll execute the
module again but this time omit the -O switch:

python3 -m mergesort

Figure 5-18 shows the __pycache__ directory listing after running this command.

Referring to figure 5-18 — Running the mergesort module without the -O switch has gener-
ated another version of the code file in the __pycache__ directory. Figure 5-19 shows the partial
results of running the new code file with the following command:

python3 __pycache__/mergesort.cpython-310.pyc

Figure 5-17: Command-Line Code File Execution

Figure 5-18: __pycache__ Directory Listing — Another Code File Has Been Generated

Figure 5-19: Running Code File with __debug__ set to True

Chapter 5: Computers, Programs, And Algorithms How Python Runs Programs

Computer Scripting Techniques with Python © 2023 Pulp Free Press 207

0
0
0
0
0
1
0
1

Referring to figure 5-19 — Notice that running the code file does not require the use of the -O
switch because it has already been compiled and assembled. Again, to clarify, you don’t normally
need to execute a code object file directly as this is handled automatically for you by the Python
interpreter.

6.6 Command-Line Python Command Execution

You can also execute a Python string directly from the command line by using the -c switch
as this code snippet shows:
python3 -c 'print("Hello, World!")'

Figure 5-20 shows the results of running this program.

Referring to figure 5-20 — At first blush you may wonder, "What’s it good for, this running
Python strings with the -c switch?" Great question. When I find a good answer for its practical
uses I’ll update this book. In the meantime, just know it’s a possibility but not very useful for our
purposes. Another reason to avoid it here is because the placement of the quotes affects how the
input string is parsed. For example, applying the quotes in this order causes an error:
python -c "print('Hello, World!')"

Figure 5-21 shows the results of executing this command.

Referring to figure 5-21 — The same command produces different errors depending on which
operating system you’re using. So, enough said about the -c switch for the purposes of this book.

Figure 5-20: Running Python String with -c Switch

Figure 5-21: Errors Caused by Quote Placement Git Bash (top) and macOS (above)

How Python Runs Programs Chapter 5: Computers, Programs, And Algorithms

208 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
1

6.7 Disassembling Python Module

As you learned above, a code object file (.pyc) contains compiled Python code, however, you
cannot open the file with a text editor and see intelligible bytecode instructions. To see those,
you’ll need to load a module into the Python interpreter and use the dis module to disassemble it.
Let’s disassemble the following program.

5.3 moduletest.py
1 """Test Module"""
2
3 class ModuleTest():
4
5 def __init__(self):
6 pass
7
8 def say_hi(self):
9 print('Hello World!')
10 print(f'My module __name__ is \'{__name__}\'')
11 var_one = 1
12 var_two = 2
13 sum = var_one + var_two
14 print(f'{sum}')
15
16
17 def main():
18 mt = ModuleTest()
19 mt.say_hi()
20
21
22 if __name__ == '__main__':
23 main()

Referring to example 5.3 — The moduletest module defines a class named ModuleTest with
two methods, __init__() and say_hi(). All the action is in the say_hi() method. First, it
prints the string "Hello World!" to the console. On the next line it prints the value of the
__name__ property whose value will change depending on whether the module is executed vs.
loaded, as you’ll soon see. Finally, it creates two variables, adds them together, and prints the
results. Figure 5-22 shows the results of running this program from the command line.

Referring to figure 5-22 — Note that the module’s __name__ property is set to '__main__'
when run from the command line. Now, let’s disassemble this module. To do this, launch the
Python interpreter in interactive mode, import the moduletest and dis modules, and use the
dis.dis() function to disassemble the say_hi() method as shown in figure 5-23.

Figure 5-22: Running moduletest.py from Command Line

Chapter 5: Computers, Programs, And Algorithms How Python Runs Programs

Computer Scripting Techniques with Python © 2023 Pulp Free Press 209

0
0
0
0
0
1
0
1

Referring to figure 5-23 — The disassembler output consists of three columns. The first col-
umn refers to the source code line number, so the 9 refers to line 9 of example 5.3, and on and on.
The second column lists the bytecode instructions and their offset from the beginning of the func-
tion stack frame. The third column lists the operands. A complete list of bytecode instructions for
Python 3.10 can be found here: https://docs.python.org/3.10/library/dis.html#python-bytecode-
instructions.

6.8 Using __main__.py For Application Entry Point

Up to this point in the book, I have been putting a main() function either in a separate, stand-
alone main.py module or in the module itself, as is the case with the dumbsort.py, merge-

Figure 5-23: Using dis.dis() Function to Disassemble moduletest.say_hi() Method

https://docs.python.org/3.10/library/dis.html#python-bytecode-instructions
https://docs.python.org/3.10/library/dis.html#python-bytecode-instructions

How Python Runs Programs Chapter 5: Computers, Programs, And Algorithms

210 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
1

sort.py, and moduletest.py scripts discussed in this chapter. An alternative method you can
use to create an application entry point is to add a __main__.py file to a directory. Example 5.4
gives the code for a __main__.py file that imports and runs the ModuleTest.say_hi() method.

5.4 __main__.py
1 """Application Entry Point"""
2
3 from moduletest import ModuleTest
4
5 def main():
6 mt = ModuleTest()
7 mt.say_hi()
8
9 if __name__ == '__main__':
10 main()
11

Referring to example 5.4 — Save this file in the moduletest directory as shown in figure 5-24.

To run this program, move up one directory (cd ..) and type the following command:
python3 moduletest

Figure 5-25 shows the results of running this program.

6.9 Redirecting Program Output

Often times, you’ll need to analyze program output but the program writes too much data to
the console to do any practical analysis. To aid with offline program output analysis you can redi-
rect the output from the stdout to a file as shown in the following code snippet.
python3 moduletest > moduletest/output.txt

Figure 5-24: moduletest Directory with __main__.py File

Figure 5-25: Results of Running the Code Snippet Above

Chapter 5: Computers, Programs, And Algorithms How Python Runs Programs

Computer Scripting Techniques with Python © 2023 Pulp Free Press 211

0
0
0
0
0
1
0
1

To run this code snippet, navigate to the directory above the moduletest directory, run the
moduletest program as you did in the previous section, and use the redirect character '>' to send
the output to the moduletest/output.txt file. I’ll leave it to you to examine the contents of the out-
put.txt file.

Quick Review

The Python program execution process consists of reading, parsing, compiling, assembling,
and execution phases. There are multiple ways to run a Python program.

Scripts are source files intended to be run from the command line. Modules are source files
intended to be imported by other scripts. A source file can function as a script, a module, or both.
Scripts have a main entry point and their module __name__ attribute is set to '__main__' if they
are run directly from the command line or with the -m switch. Importing a module generates code
object files stored in a __pycache__ directory. The Python interpreter uses compiled code object
files to speed up repeated module execution by avoiding the read, parse, compile, and assemble
phases. Making a modification to a source file will cause a recompilation.

Add a __main__.py file to a directory for an alternative application entry point. To save pro-
gram output for offline analysis, redirect output to a file with the redirect character '>'.

Summary

A computer is a changeable machine. It’s behavior is controlled by a set of instructions called
a program. It’s often difficult for novices to separate the notion of a computer system from the
chip upon which the computer actually resides.

A computer system includes a system unit or housing, display, keyboard, mouse or trackpad,
speakers, camera, microphone, and other peripheral devices. The system unit houses various
internal components including a power supply and/or battery, antennas for WiFi and Bluetooth,
cooling fans, and a system board which contains the processor housing.

The real work of a computer system is performed by its processor. Modern computer systems
have complex processors that are themselves considered a System-on-a-Chip (SoC). The Apple
M1 Max is an SoC that contains a Central Processing Unit (CPU), Graphics Processing Unit
(GPU) and a Neural Engine or Neural Processing Unit (NPU) supported by a Unified Memory
Architecture (UMA) connected via a high-speed data transfer Fabric.

It’s not enough to simply target the CPU with general program code. To gain full advantage of
modern SoC processors requires optimized code. Apple provides Metal Shading Language (MSL)
for the GPU and Core ML and Core ML Tools for the Neural Engine.

Computer systems contain a mix of fast, expensive memory, and slow, inexpensive memory.
Computer system designers must balance the use of each type of memory and structure the mem-
ory sub-system in a way that makes the computer perform as if the entire system was filled with
fast, expensive memory.

Cache memory is high-speed memory located close to the processor. Modern processors con-
tain level 1, 2, and 3 cache either on the same chip as the processor core, or within the same pro-
cessor package.

A program must be fetched from auxiliary storage and loaded into main memory prior to exe-
cution. Recently accessed instructions and data are stored in cache memory for faster retrieval. A

How Python Runs Programs Chapter 5: Computers, Programs, And Algorithms

212 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
1

cache hit occurs when the processor finds what it’s looking for in the cache. Conversely, if the
required data or instruction is not found in the cache, a cache miss occurs instead, delaying pro-
gram execution while the processor waits while the needed data is fetched from slower main
memory.

A bit represents a voltage within the processor and is either on or off. A 1 represents on; a 0
represents off. A series of eight bits is called a byte. Multiple bytes together represent a word, and
the length of a word is dictated by the type of processor and width of the memory bus. A 64-bit
computer would have a word size of 64 bits or 8 bytes. Memory is read into the processor a word
at a time to maximize efficiency.

A program is a set of programming language instructions plus any data the instructions act
upon or manipulate.

To a programmer using a programming language like Python, a program is a collection of
classes that model the behavior of objects in a particular problem domain. These classes model
object behavior by defining object attributes (data) and methods to manipulate these object attri-
butes. On an even higher level, a program can be viewed as an interaction between objects.

From a computer’s perspective, a program is simply machine instructions and data. Usually
both the instructions and data reside in the same memory space.

Computers are powerful because they can do repetitive things really fast. When a computer
executes a program, it constantly repeats a series of processing steps commonly referred to as the
processing cycle. The processing cycle consists of four primary steps: Instruction Fetch, Instruc-
tion Decode, Instruction Execution, and Result Store. The step names can be shortened to simply
Fetch, Decode, Execute, and Store.

Computers run programs; programs implement algorithms. A good working definition of an
algorithm for the purpose of this book is a recipe for getting something done on a computer. Pretty
much every line of source code you write is considered part of an algorithm.

The Python program execution process consists of reading, parsing, compiling, assembling,
and execution phases. There are multiple ways to run a Python program.

Scripts are source files intended to be run from the command line. Modules are source files
intended to be imported by other scripts. A source file can function as a script, a module, or both.
Scripts have a main entry point and their module __name__ attribute is set to '__main__' if they
are run directly from the command line or with the -m switch. Importing a module will generate
code object files stored in a __pycache__ directory. The Python interpreter uses compiled code
object files to speed up repeated module execution by avoiding the read, parse, compile, and
assemble phases. Making a modification to a source file will cause a recompilation.

Add a __main__.py file to a directory for an alternative application entry point. To save pro-
gram output for offline analysis, redirect output to a file with the redirect character '>'.

Skill-Building Exercises

1. Research You Computer: Research your computer and its processor. Your goal is to under-
stand its capabilities and limitations. Who makes the processor? Intel, AMD, Apple? Is it CISC
or RISC-based? Is it a System-on-a-Chip (SoC)? How does it compare to other processors in its
class?

Chapter 5: Computers, Programs, And Algorithms How Python Runs Programs

Computer Scripting Techniques with Python © 2023 Pulp Free Press 213

0
0
0
0
0
1
0
1

2. Compare Different Processors: Complete a survey of the latest processors available from
Intel, AMD, Apple, NVIDIA, Qualcomm, Rockchip, and Fujitsu. How does the processor you
have in your laptop compare to the processors offered by these companies. Move outside your
comfort zone and explore processors not found in your computer.

3. Python Interpreter Switches: You’ve seen in this chapter the use of the -O, -m, and -c inter-
preter switches. Research all the interpreter switches and note their purpose and use.

4. Running Script vs. Module: What are the differences between running a script directly vs.
running a module with the -m switch?

5. Module __name__ Attribute: What’s the value of a module’s __name__ attribute set to when
you run a script directly with the Python interpreter command-line tool.

6. Code Object Files: What’s the purpose of Python code object files stored in the __pycache__
directory?

7. Syntax Errors: During what phase of the Python execution process are syntax errors caught?
What’s the result of detecting a syntax error?

8. Algorithm Growth Rates: Research algorithm growth rates. Do there exist problems that take
longer than nn time to solve? If so, list several with a brief explanation of why the problem is so
hard to solve.

9. Using __main__.py As An Application Entry Point: Research the use of __main__.py as an
entry point. In your own words describe a situation where that would be the preferred method to
launch an application.

10. Python Interpreter Implemented In Python: Dive deeper into how the Python interpreter
works by studying this excellent article by Allison Kaptur: http://www.aosabook.org/en/500L/
a-python-interpreter-written-in-python.html

Suggested Projects

1. Disassemble a Python Module: Using the dis module discussed in this chapter, use it to dis-
assemble a function or method you created. Keep the function small and simple so that you can
easily understand the generated bytecode instructions.

2. Dive Deeper Into Python Internals: Obtain the excellent book titled CPython Internals: Your
Guide To The Python 3 Interpreter, First Edition, by Anthony Shaw, ISBN: 9781775093343

3. Buying A New Computer: If you’re in the market for a new computer, use the information
you learned in this chapter to evaluate several alternatives. List their features, processors, and
processor architectures. If you make a buying decision, explain your rationale for your choice.

http://www.aosabook.org/en/500L/a-python-interpreter-written-in-python.html
http://www.aosabook.org/en/500L/a-python-interpreter-written-in-python.html

How Python Runs Programs Chapter 5: Computers, Programs, And Algorithms

214 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
1

Self-Test Questions

1. Why do you think a SoC processor performs better than a typical processor?

2. What module can you use to disassemble Python code?

3. What’s the purpose of the dir() function?

4. If you had the choice between using one of two sorting algorithms with a growth rate of n3 or n,
which one would you chose and why?

5. What is meant by the term growth rate?

6. What are the phases of the Python execution process?

7. Can you run Python code object files (.pyc) directly?

8. What’s the purpose of the Python interpreter command-line -m switch?

9. What makes a computer a unique device?

10. List at least five components of a typical computer system.

References

Python Documentation, https://docs.python.org/3/

A Python Interpreter Written in Python, Allison Kaptur, http://www.aosabook.org/en/500L/a-
python-interpreter-written-in-python.html

Apple M1 vs. Intel Core I9: A Deeper Look, https://techjourneyman.com/blog/apple-m1-vs-
intel-core-i9-deeper-look/

Arm Cortex-X1 Core Technical Reference Manual, https://developer.arm.com/documenta-
tion/101433/0101/Functional-description/Technical-overview/Components

Apple CoreML Tools, https://github.com/apple/coremltools

Arm Website, https://www.arm.com

Python Bytecode Instructions, https://docs.python.org/3/library/dis.html#python-bytecode-
instructions

http://www.aosabook.org/en/500L/a-python-interpreter-written-in-python.html
http://www.aosabook.org/en/500L/a-python-interpreter-written-in-python.html
https://techjourneyman.com/blog/apple-m1-vs-intel-core-i9-deeper-look/
https://techjourneyman.com/blog/apple-m1-vs-intel-core-i9-deeper-look/
https://developer.arm.com/documentation/101433/0101/Functional-description/Technical-overview/Components
https://developer.arm.com/documentation/101433/0101/Functional-description/Technical-overview/Components
https://github.com/apple/coremltools
https://www.arm.com
https://docs.python.org/3/library/dis.html#python-bytecode-instructions
https://docs.python.org/3/library/dis.html#python-bytecode-instructions
https://docs.python.org/3/

Chapter 5: Computers, Programs, And Algorithms How Python Runs Programs

Computer Scripting Techniques with Python © 2023 Pulp Free Press 215

0
0
0
0
0
1
0
1

Firestore Core Overview, Apple M1 Microarchitecture Research by Dougall Johnson, https://
dougallj.github.io/applecpu/firestorm.html

Metal Performance Shaders, Apple Documentation, https://developer.apple.com/documenta-
tion/metalperformanceshaders

Performing Calculations on a GPU, Apple Documentation, https://developer.apple.com/docu-
mentation/metal/performing_calculations_on_a_gpu?language=objc

M1 GPUs for C++ Science: Getting Started, by Lars Gebraad, https://larsgeb.github.io/2022/
04/20/m1-gpu.html

Teardown: Identifying Apple M1’s Distinct Circuit Blocks, EE Times, https://www.eeta-
sia.com/teardown-identifying-apple-m1s-distinct-circuit-blocks/

Understanding ARM Architectures, InformIT, https://www.informit.com/articles/arti-
cle.aspx?p=1620207

What is IP Anyway?, Eoin McCann, Arm Community Blogs, https://community.arm.com/
arm-community-blogs/b/architectures-and-processors-blog/posts/what-is-ip-anyway

Secure Enclave, Apple Platform Security, https://support.apple.com/guide/security/secure-
enclave-sec59b0b31ff/web

Notes

https://dougallj.github.io/applecpu/firestorm.html
https://dougallj.github.io/applecpu/firestorm.html
https://developer.apple.com/documentation/metalperformanceshaders
https://developer.apple.com/documentation/metalperformanceshaders
https://developer.apple.com/documentation/metal/performing_calculations_on_a_gpu?language=objc
https://developer.apple.com/documentation/metal/performing_calculations_on_a_gpu?language=objc
https://larsgeb.github.io/2022/04/20/m1-gpu.html
https://larsgeb.github.io/2022/04/20/m1-gpu.html
https://www.eetasia.com/teardown-identifying-apple-m1s-distinct-circuit-blocks/
https://www.eetasia.com/teardown-identifying-apple-m1s-distinct-circuit-blocks/
https://www.informit.com/articles/article.aspx?p=1620207
https://www.informit.com/articles/article.aspx?p=1620207
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/what-is-ip-anyway
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/what-is-ip-anyway
https://support.apple.com/guide/security/secure-enclave-sec59b0b31ff/web
https://support.apple.com/guide/security/secure-enclave-sec59b0b31ff/web

How Python Runs Programs Chapter 5: Computers, Programs, And Algorithms

216 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
1
0
1

	Ch-5: Computers, Programs, And Algorithms
	1.1 Computer vs. Computer System
	1.1.1 Computer System
	1.1.2 Processor

	1.2 Three Aspects of Processor Architecture
	1.2.1 Feature Set
	1.2.2 Feature Set Implementation
	1.2.3 Feature Set Accessibility
	1.2.4 From Machine Code To Assembly Language
	1.2.5 How This Relates To The Apple M1 Max

	2 Memory Organization
	2.1 Memory Basics
	2.1.1 Memory Hierarchy
	2.1.2 Bits, Bytes, Words
	2.1.2.1 Bit
	2.1.2.2 Byte
	2.1.2.3 Word

	3 What Is A Program?
	3.1 Two Views of a Program
	3.1.1 The Human Perspective
	3.1.2 The Computer Perspective

	4 The Processing Cycle
	4.1 Fetch
	4.2 Decode
	4.3 Execute
	4.4 Store
	4.5 Why A Program Crashes

	5 Algorithms
	5.1 Good vs. Better Algorithms
	5.1.1 Dumb Sort
	5.1.2 Merge Sort

	5.2 Algorithm Runtime Growth Rate

	6 How Python Runs Programs
	6.1 Python Execution Process
	6.2 Command-Line Script Execution
	6.3 Pipe Script to Python Command
	6.4 Command-Line Module Execution
	6.4.1 Explicitly Setting Module __name__ To '__main__'

	6.5 Command-Line Code Object File Execution
	6.6 Command-Line Python Command Execution
	6.7 Disassembling Python Module
	6.8 Using __main__.py For Application Entry Point
	6.9 Redirecting Program Output

