
Computer Scripting Techniques with Python © 2023 Pulp Free Press 293

0
0
0
0
1
0
0
1

00001001

Ch-9: Project Organization

Learning Objectives
• Create a project directory structure suitable for Python development

• State the purpose of the src directory

• State the purpose of the docs directory

• State the purpose of the tests directory

• List and describe the types of files found in the src, tests, and docs directories

• State the purpose of the .gitignore file

• Add entries to the .gitignore file

• State the purpose of the README.md File

• Use Markdown to create project documentation

• Reference the Markdown Cheat Sheet to help build project documentation

• State the purpose of the main.py module

• Run the main.py module from the project root directory

CHAPTER 9

Project Organization

Chapter 9: Project Organization

294 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
0
0
1

Introduction

In this short, but critically important chapter, you will learn a baseline directory structure
designed to help you impose order upon your projects. It places source code, test, and documenta-
tion files in separate directories while keeping the project’s root directory clear for project control
and configuration files. In later chapters, you will build upon the baseline directory structure and
add subdirectories, and control and configuration files as required to suit a project’s particular
needs.

Why is this even a stand-alone chapter? As simple as the concept of project organization may
seem at first blush, the most confounding question a novice programmer seeks to answer when
they first learn how to program, especially in Python, is “Where do I put my source code files?”
Naturally, their first instinct, if not provided with clear, understandable guidance, is to ask Google
and YouTube, where they will find plenty of answers, some right, some less so, many dated and
based on older versions of Python, and most not flexible enough to meet the demands of modern
programming projects in which Python may play only a supporting role. Faced with conflicting
recommendations and not knowing any better, they place all their source files in the root project
directory, which makes things easy in the short term but a complete mess of things in the long
term. Reorganizing a project is way more of a pain in the booty than starting out right the first
time around.

Besides a flexible, workable, extensible project organization structure, you’ll add a few more
tools to your programmer’s tool belt. These include how to run Python files located in the src
directory from the project’s root directory, how to reference modules located in the src directory
from unit tests located in the tests directory, how to use Markdown to create project documenta-
tion located in a README.md file, and how to add entries to the .gitignore file.

Perhaps the best motivation I can offer you is that the project organization structure you learn
here can be used for many other programming languages besides Python. Later in the book, you’ll
add on to the baseline structure to support different types of applications. For example, if your
application uses a database, you’ll want to add a database folder to store the database creation
scripts.

1 Baseline Project Structure

For context, Figure 9-1 gives the basic repository layout suggested in chapter 8.

Referring to figure 9-1 — Each of the repository’s project folders, (i. e., Project_1, Project_2,
etc.), would contain the project structure, or some form of it, discussed in this section. Figure 9-2
gives a graphical view of the baseline project organization structure.

Referring to figure 9-2 — The baseline project organization structure consists of a
README.md file, an optional .gitignore file, and three subdirectories: src, tests, and docs. The
following sections discuss the contents of each of these directories in greater detail.

Chapter 9: Project Organization

Computer Scripting Techniques with Python © 2023 Pulp Free Press 295

0
0
0
0
1
0
0
1

1.1 SRC Directory

The project’s src directory contains source code files and module folders. For Python projects
these may be all Python files, but the src directory could contain a combination of programming
language files. For the purposes of this book, I’ll stick to Python source files and modules.

For Python applications, I add a main.py module, which serves as the program main entry
point. The main.py module imports modules required for the particular application, be they
located in the src directory or third-party packages installed with pip/pip3. I’ll talk more about
installing packages in Chapter 10: Virtual Environments with Pipenv.

1.2 Tests Directory

The project’s tests directory contains unit and integration test files. These are ordinary Python
files that start with the string test. For example, referring to figure 9-2, if, in the src directory,

Figure 9-1: Suggested Class Projects Repository Structure

Figure 9-2: Project Organization Structure (Baseline)

Chapter 9: Project Organization

296 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
0
0
1

you had a Python file named module.py, then, if you wanted to test that code, in the tests directory
you would have a corresponding file named test_module.py. The testing framework employed
dictates how to name test modules, classes, and methods. I talk more about unit testing in Chapter
21: Unit Testing, after you’ve been formally introduced to classes and methods.

1.3 Docs Directory

Use the project’s docs directory to store project documentation. This includes automatically-
generated documentation created by running a document generator tool like Sphinx. It can also
include any number of file types including Microsoft Word documents, Microsoft PowerPoint
slides, web pages, you name it. This does not replace the project’s README.md file, which is
used to describe the project and offer general usage or application installation instructions. (Note:
You can include anything you want in a README.md file. I’ve listed just a few of the common
uses for a README.md file here.) You can also store documentation image files in the docs direc-
tory as well.

1.4 The Project README.md and .gitignore Files

At the root of the project directory you’ll have a README.md file and an optional .gitignore
file.

1.4.1 README.md File

As mentioned above, the purpose of the README.md file is to describe the purpose of the
project and provide instructions on how to run the application. GitHub will automatically load and
render a README.md file on the project’s repository page. To see examples of the many different
and creative ways people use README.md files just poke around on GitHub. I talk more about
how to add content to a README.md file with the Markdown language later in the chapter.

1.4.2 .gitignore File

As discussed in Chapter 8: Source Code Management with Git and GitHub, the purpose of a
.gitignore file is to hold a list of project files and directories you do not want tracked or pushed to
the repository. Files and directories listed in the .gitignore file are ignored by git when adding and
committing files. Files listed in the .gitignore file remain untracked. I talk more about the
.gitignore file in the following section.

A small to medium-sized repository may only need one .gitignore file located at the root of
the repository directory as shown in figure 9-1.You can add .gitignore files to project subdirecto-
ries as required to tweak the ignore list.

Quick Review

The baseline project organizational structure includes a README.md file, an optional
.gitignore file, and three directories: src, tests, and docs. Store application source files in the src
directory, which can have any number of files and subdirectories. Use the tests directory to store
unit and integration test files. These, too, can be organized into subdirectories. Test filenames usu-

https://www.sphinx-doc.org/en/master/
https://www.markdownguide.org

Chapter 9: Project Organization Configuring .gitignore File

Computer Scripting Techniques with Python © 2023 Pulp Free Press 297

0
0
0
0
1
0
0
1

ally begin with the string test. Store all project documentation with the exception of the
README.md file in the docs directory. This includes automatically generated documentation.

2 Configuring .gitignore File

There are several ways you can add a .gitignore file to your project. You saw in the previous
chapter that when you create a repository, you could select a template which would pre-populate
the repository’s .gitignore file with typical files and directories to ignore depending on what type
of programming language used. You can also create one from scratch, or flex your Google dorks
and find a good example on the Internet. In this brief section, I’ll discuss each of these
approaches, but before I get started, I’d like to reemphasize an important point to always keep in
mind.

2.1 Think Before You Commit

Yes, back to the topic of mindfulness and a brief recap of the previous chapter. Configure your
.gitignore file before you do a git add and git commit. The .gitignore file automatically created
and populated for you when you created your GitHub repository will cover the typical things you
want to omit from the repository, but not everything. Stay alert for configuration files and directo-
ries, misplaced SSH keys, along with passwords stored in the clear or in any form. The business
of security delivers death by a thousand cuts. Think before you commit.

2.2 Roll Your Own

To create a .gitignore file from scratch, navigate to you project directory and create the file
with the following command:
touch .gitignore

Alternatively, you can create it with your text editor of choice:
nano .gitignore

...or...
vi .gitignore

The previous two forms will launch the respective editor and allow you to start editing the
new file. Add whatever it is you want to ignore then save and close the file. As you work on your
project, you may add files and directories you want to ignore. Simply add them to the .gitignore
file before you use git add and git commit.You can always verify the .gitignore file entries are
indeed heeded by running git status and reviewing the output. The complete .gitignore docu-
mentation is located on the Git-SCM website: https://git-scm.com/docs/gitignore

2.3 Copy A Pre-Existing Template

You can copy an existing template, either a good example you found on some random website
that matches your particular project, or one from GitHub. The GitHub repository .gitignore tem-
plate files are located here: https://github.com/github/gitignore You can create your .gitignore file
as described above, then copy the contents of a suitable template file and paste it into yours.

https://git-scm.com/docs/gitignore
https://github.com/github/gitignore

Documenting Your Project With README.md Chapter 9: Project Organization

298 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
0
0
1

Quick Review

The purpose of the .gitignore file is to maintain a list of files and directories you do not want
to track or push to your repository. You can either create a .gitignore file from scratch and add
ignored items as required, or start from a template. You can search for suitable .gitignore file
examples online or use a GitHub template.

3 Documenting Your Project With README.md

At the most basic level, use the README.md file to provide a project description and usage
instructions. Figure 9-3 shows a typical README.md file as it is rendered on GitHub.

Referring to figure 9-3 — This is only a partial view of this project’s README.md file. You
can see the entire file at the following repository: https://github.com/pulpfreepress/it-590-aws/
tree/main/vpc This serves as documentation for one particular project, namely, the Virtual Private
Cloud (VPC) project, which is one of many projects belonging to this repository. Figure 9-4
shows the repository’s main README.md file.

Figure 9-3: Typical README.md File — Screenshot Taken from GitHub

https://github.com/pulpfreepress/it-590-aws/tree/main/vpc
https://github.com/pulpfreepress/it-590-aws/tree/main/vpc

Chapter 9: Project Organization Documenting Your Project With README.md

Computer Scripting Techniques with Python © 2023 Pulp Free Press 299

0
0
0
0
1
0
0
1

Referring to figure 9-4 — This is the main repository README.md. It contains links to each
of the subprojects. Example 9.1 gives the Markdown source code for this README.md file.

9.1 README.md Markdown Source
for repository: https://github.com/pulpfreepress/it-590-aws

1 # it-590-aws
2
3 Collection of example CloudFormation templates, bash shell scripts, and Python
code. To run these examples on Windows machines, install <a href="https://git-scm.com/
downloads">git with bash window.
4
5 **NOTE:** I welcome suggestions for examples and pull requests.
6 Also, many of these examples depend on and reference resources located in other
stacks that are assumed to be deployed. (Cross-Stack References) See the **Depends on**
for each repo sub-project below.

Figure 9-4: Main Repository README.md File with Hyperlinks to Subprojects — Partial View

Documenting Your Project With README.md Chapter 9: Project Organization

300 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
0
0
1

7
8
9 ## Non-Default Virtual Private Cloud (VPC)
10 vpc
11
12
13 ## EC2 Instance in Public Subnet
14
15 ec2</br>
16 **Depends On:** vpc
17
18 ## EC2 Web Server -- Apache + PHP
19
20 ec2-web</br>
21 **Depends On:** vpc
22
23 ## Elastic File System (EFS)
24
25 efs</br>
26 **Depends On:** vpc
27
28 ## Two EC2 Apache Web Servers with Shared EFS Volume
29
30 ec2-web-efs</br>
31 **Depends On:** vpc && efs</br>
32
33 ## Lambda Echo Server
34
35 lambda-echo
36
37 ## Lambda Echo Server with Custom RestAPI
38
39 lambda-echo-custom-api
40
41
42 ## Simple Notification Service (SNS)
43
44 sns
45
46 ## Simple Queue Service (SQS)
47
48 sqs
49
50 ## Lambda Echo with SNS
51
52 lambda-echo-sns</br>
53 **Depends On:** sns
54
55 ## DynamoDB
56
57 dynamodb
58
59 ## DynamoDB Global Table
60 dynamodb-global-table</br>
61 **NOTE:** Deploy this is you want multi-region replication for highly-available
(HA) Lambda Echo SQS DynamoDB pipelines in multiple
regions
62
63 ## Lambda Echo with SQS, SNS, and DynamoDB

Chapter 9: Project Organization Documenting Your Project With README.md

Computer Scripting Techniques with Python © 2023 Pulp Free Press 301

0
0
0
0
1
0
0
1

64
65 lambda-echo-sqs-dynamodb</br>
66 **Depends On:** sns && sqs&& dynamodb</br>
67
68 ## Relational Database Service (RDS)
69
70 rds</br>
71 **Depends On:** vpc
72
73 ## EC2 with Two Web Servers, EFS, and an RDS Management Server
74
75 ec2-web-rds</br>
76 **Depends On:** vpc && rds</br>
77

Referring to example 9.1 — Markdown is easy to read and master. For a complete explanation
of what you see above consult the Markdown Cheat Sheet. I just what to touch on some high-
lights. Starting from the top, main headings start with a single hashtag '#'. Second-level headings
start with two hashtags '##', and so on. Bold text is enclosed within two asterisks like so
'**This text will render bold.**' On line 10, the anchor tag 'vpc</
a>' is a relative link to the repository’s vpc project subdirectory.

Example 9.2 shows the Markdown code for the vpc project’s README.md file shown in fig-
ure 9-3.

9.2 README.md file
for vpc Project

1 # Virtual Private Cloud (VPC)
2
3 Define a VPC with CloudFormation template and deploy via bash script `build.sh`
4
5 # Default VPC
6 ---------
7 All new AWS accounts come with a default VPC in each region. Pictured below is a
default VPC in us-east-1. The default VPC in each region contains a subnet in every
availability zone. The network access control list allows inbound and outbound traffic
from all IPs (0.0.0.0/0), and the default route table enables communication between
resources within and between subnets and forwards outbound traffic to the internet
gateway.
8
9 This works fine for simple deployments but for most applications, you need more
control over network security and application deployment configurations. That's a job
for a custom VPC.
10
11
12 # Custom VPC
13 ---------
14 Pictured below is a custom VPC that has both public and private subnets. A subnet
is public if it accepts inbound traffic from the internet, and a subnet is private if
it does not, or otherwise restricts inbound public traffic. A private subnet uses a NAT
gateway to enable outbound traffic to the internet. To access resources within a
private subnet, say an EC2 instance, you can use a bastion host or session manager.
15
16
17 # Deploying the VPC
18 ---------
19 The VPC CloudFormation template given in this project `vpc.yml` defines a custom
VPC with three public and three private subnets, an Internet Gateway, NAT Gateway,

https://www.markdownguide.org/cheat-sheet/

Purpose of main.py Module Chapter 9: Project Organization

302 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
0
0
1

NACL, RouteTables, Routes, and a Security Group that limits access to a known IP
address. Feel free to customize as you see fit.
20
21 * Install and configure AWS CLI
22 * On Windows -- Install Git with Unix/Linux tools for access to bash shell
23 * Edit `build.sh` and/or `vpc.yml` to customize deployment
24 * You'll need to edit the SecurityGroupAllowedIP parameter and change the IP
address to your IP address
25 * Run `./build.sh` to get help
26 * Run `./build.sh dev oh vpc` to deploy development VPC in us-east-2
27

Referring to example 9.2 — On line 10, an tag is used to embed an image. In this case,
a relative path is provided to the diagrams/vpc/DefaultVPC.png image file. By relative path, I
mean the path to the image file relative to the README.md file. Since this README.md file is
located in the repository’s vpc directory, it’s assumed the diagrams directory is located in the
same directory. Alternatively, you could have given a valid web URL to some file on the Internet.

Quick Review

Include a README.md file in your project root directory. Its purpose is to provide a project
description and instructions on how to deploy and use the application along with any other infor-
mation you deem fit to include.

A README.md file is composed of Markdown code and rendered as HTML in a browser.
GitHub will automatically render the README.md file on your repository page.

4 Purpose of main.py Module

The purpose of the main.py module is to provide a convenient, easily-identifiable point-of-
entry for your application. Although I have demonstrated the use of a main.py module in earlier
chapters, it’s worth repeating.

One of the benefits of using a main.py module is that it keeps the application run commands
consistent between different projects. The main.py module for each project is uniquely but pre-
dictably configured, however, the command to run different applications remains the same:
python3 src/main.py

Let me demonstrate. Figure 9-5 shows a project tree view with two files in the src folder:
main.py and example.py.

Referring to figure 9-5 — This figure shows a tree view for the project_2 directory. Along
with the main.py module there is a module named example.py. The example.py module contains
all the program functionality. The main.py module acts as the main entry point for the application.
In other words, the main.py module supplies the code required to execute from the command-line.
It also imports the example.py module and calls any functions or methods required to run the
application.

PRO TIP: Use a main.py module to act as the main entry point to your application. Doing so allows you to
standardize the run commands across different applications.

Chapter 9: Project Organization Purpose of main.py Module

Computer Scripting Techniques with Python © 2023 Pulp Free Press 303

0
0
0
0
1
0
0
1

Example 9.3 give the code for the main.py module.
9.3 main.py

1 """Explicit main execution module."""
2
3 from example import Example
4
5
6 def main():
7 """Execute main program."""
8 example = Example()
9 print(f'Count = { example.get_count() }')
10 example.iter_demo()
11 example.lambda_demo();
12
13
14 # Call main() if this is the main execution module
15 if __name__ == '__main__':
16 main()
17

Referring to example 9.3 — You should be familiar with how this code works by now. It
checks to see if it’s the "__main__" module and if so, it calls the main() method. The rest of the
code will change depending on the project. In this case, from the example module it imports the
Example class, then, in the body of the main() method, it creates an object of type Example by
calling the Example() constructor, followed by several calls to methods provided by the Example
object.

Example 9.4 lists the code for the Example.py module.
9.4 Example.py

1 """example module contains Example class."""
2
3 class Example:
4 """Docstrings.
5
6 Example class

Figure 9-5: Project Tree View

Purpose of main.py Module Chapter 9: Project Organization

304 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
0
0
1

7 """
8
9 def __init__(self):
10 """Initialize example object."""
11 self.count = 0
12
13
14 def get_count(self):
15 """Return self.count."""
16 return self.count
17
18
19 def increment_count(self):
20 """Increment and return self.count."""
21 self.count += 1
22 return self.count
23
24
25 def sum(self, arg_a, arg_b):
26 """Return sum of arg_a + arg_b."""
27 return arg_a + arg_b
28
29
30 def iter_demo(self):
31 """Demonstrate string iteration."""
32 message = 'A string of letters is also a list of chars...'
33 for s in message:
34 print(f'{s} ', end="")
35 print()
36
37
38 def lambda_demo(self):
39 """Demonstrate lambda function."""
40 print(f'{list(map(lambda x: x + x , [1,2,3,4,5]))} ', end="")
41

Referring to example 9.4 — This program doesn’t do much other than demonstrate a few
basic Python concepts, which I cover in great detail later in the book. Just note that the example
module defines a class named Example, and that the Example class defines a handful of methods
including a constructor (__init__(self)) method. To run this program type the following com-
mand from the project root directory:
python3 src/main.py

Figure 9-6 shows the results.

Figure 9-6: Results of Running the main.py Module from the Command Line

Chapter 9: Project Organization Linking Modules Located in src Directory to Tests

Computer Scripting Techniques with Python © 2023 Pulp Free Press 305

0
0
0
0
1
0
0
1

4.1 Parting Thoughts

The guts of a main.py module will change depending on the nature of the application. Differ-
ent applications will use different modules, create different objects, and call different methods.
Using a main.py module is good practice because it allows you to standardize on application run
commands. It also simplifies build script maintenance, a topic I’ll discuss in detail in Chapter 11:
A Bash Build Script.

Quick Review

The purpose of a main.py module is to provide a main entry point for an application. It sup-
ports standardized application run commands, which simplifies application build script mainte-
nance.

5 Linking Modules Located in src Directory to Tests

Refer again to the project tree view shown previously in figure 9-5. Notice in the tests direc-
tory a file named context.py. The purpose of the context.py file is to provide a central module from
which test modules can import modules defined in the src directory. If you have ever been ticked
off and frustrated trying to place Python unit tests in a separate directory only to be informed,
when you try to run the tests, "Module not found..." or words to that effect. The context.py
module solves that problem. Example 9.5 gives the listing for the context.py file.

9.5 context.py
1 import os
2 import sys
3
4 sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), \
5 '../src/')))
6
7 from example import Example
8

Referring to example 9.5 — In this example, the context.py module is adding the project src
directory to the Python system path. Then, on line 7, it imports the Example class from the exam-
ple module. Example 9.6 shows how the context.py module is used in a unit test.

9.6 test_example.py
1 import unittest
2 from context import Example
3
4 class Test_Example(unittest.TestCase):
5
6 def test_increment(self):
7 example = Example()
8 assert example.get_count() == 0
9 example.increment_count()
10 assert example.get_count() == 1
11
12
13 def test_sum(self):
14 example = Example()
15 assert example.sum(1, 1) == 2
16 assert example.sum(1,2) == 3

Linking Modules Located in src Directory to Tests Chapter 9: Project Organization

306 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
0
0
1

Referring to example 9.6 — The text_example.py module implements a set of unit tests using
Python’s built-in unittest framework. If you’re unfamiliar with unit tests, don’t fret — I cover unit
testing in Chapter 21: Unit Testing. On line 1, I import the unittext module. On line 2, I import
the Example class from the context module. I then use the Example class in the body of the unit
tests as required. To execute these tests run the following series of commands from the project’s
root directory:

pushd tests

python3 -m unittest -v

popd

The pushd command saves the current directory and switches to the tests directory. The unit-
test module executes in verbose mode (-v), and finally, the popd command returns to the project
root directory. This series of commands is necessary because to resolve module names located in
the tests directory the unittest module must run in the tests directory. Figure 9-7 shows the results
of running these commands.

Referring to figure 9-7 — Starting from the project_2 root directory, the pushd tests com-
mand saves the current working directory, prints it to the console, and changes to the tests direc-
tory. Now in the tests directory, the python3 -m unittest -v command runs all the unit tests it
finds via autodiscovery and writes a verbose report of test results to the console. Finally, the popd
command returns to the previous working directory.

In the interest of full disclosure, you could have simply changed to the tests directory with the
cd tests command, run the tests, and changed back to the project root directory with cd .., but
using the pushd and popd commands is really the way to go.

Figure 9-7: Running unittest Module Starting from Project Root Directory

Chapter 9: Project Organization Baseline Project Template Download

Computer Scripting Techniques with Python © 2023 Pulp Free Press 307

0
0
0
0
1
0
0
1

Quick Review

The tests/context.py module provides a central module from which unit tests located in the
project’s tests directory can import modules located in the src directory. Favor the use of the
pushd and popd commands over the cd command when you need to make a temporary directory
change and return to the original directory.

6 Baseline Project Template Download

You can find the baseline project template in the book’s repository: https://github.com/pulp-
freepress/cst_with_python_1st_ed, in the chapter09 directory.

Summary

The baseline project organizational structure includes a README.md file, an optional
.gitignore file, and three directories: src, tests, and docs. Store application source files in the src
directory, which can have any number of files and subdirectories. Use the tests directory to store
unit and integration test files. Test filenames usually begin with the string test. Store all project
documentation with the exception of the README.md file in the docs directory. This includes
automatically generated documentation.

The purpose of the .gitignore file is to maintain a list of files and directories you do not want
to track or push to your repository. You can either create a .gitignore file from scratch and add
ignored items as required, or start from a template. You can search for suitable .gitignore file
examples online or use a GitHub template.

Include a README.md file in your project root directory. Its purpose is to provide a project
description and instructions on how to deploy and use the application along with any other infor-
mation you deem fit to include.

A README.md file is composed of Markdown code and rendered as HTML in a browser.
GitHub will automatically render the README.md file on your repository page.

https://github.com/pulpfreepress/cst_with_python_1st_ed
https://github.com/pulpfreepress/cst_with_python_1st_ed

Baseline Project Template Download Chapter 9: Project Organization

308 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
0
0
1

The purpose of a main.py module is to provide a main entry point for an application. It sup-
ports standardized application run commands, which simplifies application build script mainte-
nance.

The tests/context.py module provides a central module from which unit tests located in the
project’s tests directory can import modules located in the src directory. Favor the use of the
pushd and popd commands over the cd command when you need to make a temporary directory
change and return to the original directory.

Skill-Building Exercises

1. Download Baseline Project Template: Download the baseline project template from the
book’s repository and adopt it for use with you projects. I recommend you modify it to suit your
needs and push it to your personal repository for future use.

2. Terminal Command Practice: Practice using the pushd and popd commands. Start in any
directory and change to a different directory with the pushd command. Return to your starting
directory with the popd command.

Suggested Projects

1. Sphinx Documentation Generator: Research the Sphinx documentation generator tool and
use it to generate documentation for your projects. https://www.sphinx-doc.org

Self-Test Questions

1. What’s the purpose of the src directory?

2. What’s the purpose of the docs directory?

3. What’s the purpose of the tests directory?

4. What types of project files are found in the src directory?

5. What types of project files are found in the docs directory?

6. What types of project files are found in the tests directory?

7. What’s the purpose of the main.py module?

8. What’s the purpose of the tests/context.py module?

https://www.sphinx-doc.org/en/master/

Chapter 9: Project Organization Baseline Project Template Download

Computer Scripting Techniques with Python © 2023 Pulp Free Press 309

0
0
0
0
1
0
0
1

9. What do the commands pushd and popd do?

10. What are some advantages of using the pushd and popd commands over the cd command?

References

Git-SCM .gitignore Page, https://git-scm.com/docs/gitignore

GitHub .gitignore Template Repository, https://github.com/github/gitignore

MarkdownGuide.org, https://www.markdownguide.org

Sphinx Documentation Generator, https://www.sphinx-doc.org

Notes

https://git-scm.com/docs/gitignore
https://github.com/github/gitignore
https://www.markdownguide.org
https://www.sphinx-doc.org/en/master/

Baseline Project Template Download Chapter 9: Project Organization

310 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
0
0
1

	Ch-9: Project Organization
	1.1 SRC Directory
	1.2 Tests Directory
	1.3 Docs Directory
	1.4 The Project README.md and .gitignore Files
	1.4.1 README.md File
	1.4.2 .gitignore File

	2 Configuring .gitignore File
	2.1 Think Before You Commit
	2.2 Roll Your Own
	2.3 Copy A Pre-Existing Template

	3 Documenting Your Project With README.md
	4 Purpose of main.py Module
	4.1 Parting Thoughts

	5 Linking Modules Located in src Directory to Tests
	6 Baseline Project Template Download

