
Computer Scripting Techniques with Python © 2023 Pulp Free Press 383

0
0
0
0
1
1
0
1

00001101

Ch-13: Control Flow

Learning Objectives
• Define the term control flow
• State the purpose of control flow statements
• State the purpose of conditional expressions
• State the purpose of the if statement
• Describe scenarios when you would use an if statement
• State the purpose of the if statement’s elif and else clauses
• Demonstrate your ability to write nested if statements using if/elif/else
• State the purpose of the for statement
• Explain the purpose of the range() function
• Explain what is meant by the term iterable
• State the purpose of the while statement
• Explain why you would use an else clause in a for or while loop
• State the purpose of the match statement
• State the purpose of the break statement

CHAPTER 13

Control Flow

Chapter 13: Control Flow

384 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
1
0
1

Introduction

To do anything remotely useful in life you must make decisions based on available data, exe-
cute tasks repeatedly either forever or for a set amount of time, know when to stop doing some-
thing and when to keep going, and know how to judge whether or not something someone says to
you is true or false. The same concepts apply to programming. The constructs provided by Python
that enable you to write this type of code are referred to as control flow statements.

Python provides several types of control flow statements that enable you to write useful pro-
grams. These include branching and looping statements. For branching, Python provides the if
statement along with its elif and else clauses. The match statement is also used for branching as
well as pattern matching. For looping, Python provides the while and for statements.

The common thread shared among branching and looping statements is the notion of a condi-
tion. Branching statements determine which path to take based on the result of a conditional
expression. Looping statements, too, use the results of conditional expressions to determine when
to exit the loop. To effectively employ branching and looping statements in your programs you
must master the formulation of conditional expressions.

Along the way you’ll learn new vocabulary and concepts including what is meant by the term
iterator and iterating. If you have experience in programming languages like C++, Java, or C#,
you may need to break some old habits regarding how to write for loops.

When you have finished this chapter, you’ll be able to write Python programs that process
data, make decisions, and produce meaningful results.

1 Conditional Expressions

Conditional expressions are a fundamental concept central to the mastery of control flow
statements. Essentially, all control flow statements must evaluate a conditional expression to
determine which code path to follow. In Python, the conditional expression may be explicitly
stated or implied.

1.1 What Is True? What Is False?

To understand conditional expressions you must first learn what sorts of things are considered
true and what sorts of things are considered false. Many types of Python objects can be individ-
ually tested to determine if they are true or false; objects that evaluate to true are referred to as
being truthy and those that evaluate to false are considered falsy. Some of the differences between
what Python considers truthy and falsy are obvious, as is the case with the Python boolean literals
True and False. True is always true and False is always false. Likewise, 1 is true and 0 is false.
Just knowing this little bit gets you pretty far. The rest can be learned over time and if you don’t
try anything too fancy in your code without first doing some research you should be fine.

Generally speaking, when you write code, you will find yourself performing two types of
object comparisons: 1. comparing objects against each other, and 2. using individual objects in
conditional expressions. Example 13-1 gives the code for a short program that shows the results
of common Python object comparisons and shows whether or not they are truthy or falsy.

Chapter 13: Control Flow

Computer Scripting Techniques with Python © 2023 Pulp Free Press 385

0
0
0
0
1
1
0
1

13.1 truthyfalsy.py
1 from prettytable import PrettyTable
2
3 def main():
4 x = PrettyTable()
5 x.field_names = ["Object", "Truthy/Falsy"]
6
7 x.add_row(["True == True", (True == True)])
8 x.add_row(["False == True", (False == True)])
9 x.add_row(["1 == True", (1 == True)])
10 x.add_row(["0 == True", (0 == True)])
11 x.add_row(["-1 == True", (-1 == True)])
12 x.add_row(["2 == True", (2 == True)])
13 x.add_row(["[] == True", ([] == True)])
14 x.add_row(["[[]] == True", ([[]] == True)])
15 print(x)
16
17 print()
18
19 y = PrettyTable()
20 y.field_names = ["Object", "Truthy/Falsy"]
21 y.add_row(["if True:", True if True else False])
22 y.add_row(["if 1:", True if 1 else False])
23 y.add_row(["if 2:", True if 2 else False])
24 y.add_row(["if -1:", True if -1 else False])
25 y.add_row(["if 0:", True if 0 else False])
26 y.add_row(["if []:", True if [] else False])
27 y.add_row(["if [[]]:", True if [[]] else False])
28 y.add_row(["if {}:", True if {} else False])
29 y.add_row(["if {'key':'value'}:", True if {'key':'value'} else False])
30 y.add_row(["if '':", True if '' else False])
31 y.add_row(["if 'hello':", True if 'hello' else False])
32 print(y)
33
34
35 if __name__ == "__main__":
36 main()
37

Referring to example 13.1 — On line 1, I am importing a library called prettytable that
makes it easy to create tabular data output. Overall, this program consists of the main() function
which starts on line 3. Lines 7 through 14 compare various objects to the boolean literal True. The
== operator performs an equality test. Lines 20 through 31 use various objects in a conditional
expression. When you run this program and study the output you can make some general assump-
tions about what Python considers truthy or falsy. Figure 13-1 shows the results of running this
program.

Referring to figure 13-1 — The first table shows that when comparing objects directly against
the boolean literal True, only itself and the numeric value 1 evaluate to True. False and the
numeric value 0 evaluate to False, as do all the other objects. The bottom table shows that when
used in an if statement, True evaluates to True, as expected, as does the numeric value 1, as
expected, but so do the values 2 and negative 1. False, and the numeric value 0 evaluates to
False, also as expected. An empty list [] evaluates to False but a non-empty list [[]] evaluates to
True. An empty dictionary {} evaluates to False but a non-empty dictionary {'key':'value'}
evaluates to True. An empty string '' evaluates to False but a non-empty string 'hello' evalu-
ates to True.

Chapter 13: Control Flow

386 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
1
0
1

Pro Tip: Be aware of what Python considers truthy and falsy when formulating conditional expressions.
Always verify the truthy or falsy behavior of an object before relying on its behavior in your code.

1.2 Comparison Operators

Table 13-1 lists Python’s comparison operators. Use comparison operators when you need to
compare the values of different objects. You’ve already seen the equality operator == in action in
many examples up to this point in the book.

Operator Name Example

== Equals count == 23

!= Not Equals name != "Steve"

> Greater Than red_states > blue_states

< Less Than account["value"] < minumum_balance

>= Greater Than or Equal To len(string_var) >= 10

<= Less Than or Equal To days_remaining <= 1

Table 13-1: Python Comparison Operators

Figure 13-1: Results of Running Example 13-1

Chapter 13: Control Flow

Computer Scripting Techniques with Python © 2023 Pulp Free Press 387

0
0
0
0
1
1
0
1

1.3 Logical Operators

Table 13-2 lists Python’s logical operators. Use logical operators to compare the results of
multiple conditional expressions.

1.4 Identity Operators

Table 13-3 lists Python’s identity operators. Use an identity operator if you need to verify if
two variables are actually the same object (i.e., refer to the same location in memory).

1.5 Membership Operators

Table 13-4 lists Python’s membership operators. Use a membership operator to check if a
sequence is present in another sequence. The operators are most often used to check if a substring
is present within a larger string sequence.

Operator Description Example

and Returns True if both conditional
expressions are True

(age >= 5) and (height >= 54)

or Returns True if either one of the
conditional expressions are True

(color == blue) or (color == purple)

not Negates the result of the condi-
tional expression

(can_read) and (not dyslexic)

Table 13-2: Python Logical Operators

Operator Description Example

is Returns True if both variables
are the same object

object_in_queue is mike

is not Returns True if both variables
are not the same object

mike is not sally

Table 13-3: Python Identity Operators

Operator Description Example

in Returns True if the sequence is
present in the target sequence

"llo" in "hello"

not in Returns True if the sequence is
not in the target sequence

"llo" not in ["hello", "world"]

Table 13-4: Python Membership Operators

Branching Statements Chapter 13: Control Flow

388 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
1
0
1

1.6 Type Checking

Table 13-5 lists Python’s built-in functions you can use in conditional expressions to verify an
object’s type. This comes in handy when you want to enforce argument types passed to function
and method calls.

Referring to table 13-5 — You will use the isinstance() built-in function quite often. I will
wait and cover the issubclass() built-in function later in the book in the chapters on object-ori-
ented programming.

Quick Review

Python’s control flow statements take action based on the results of conditional expressions.
You can build conditional expressions from Python’s comparison, logical, identity, and member-
ship operators. Two additional built-in functions you’ll find helpful include isinstance() and
issubclass().

Various types of Python objects are considered inherently truthy or falsy. At minimum, you
should memorize that Python’s boolean literal True and the numeric value 1 always evaluate to
true. Conversely, the boolean literal False and the numeric value 0 always evaluate to false. As a
rule, non-empty data structures and strings evaluate to true, while empty data structures and
strings evaluate to false.

Always verify the truthy or falsy behavior of an object before relying on its behavior in your
code.

2 Branching Statements

Branching statements enable you to specify which path of execution to follow based on the
results of a conditional expression. Python provides two types of branching statements: if/elif/
else and match. Let’s start with the basic if statement.

2.1 If Statement

The if statement is used to select a path of execution based on the results of a conditional
expression. A conditional expression, regardless of how complicated, will always evaluate to
either true or false. Figure 13-2 provides a conceptual illustration of an if statement.

Referring to figure 13-2 — A program’s path of execution proceeds until it reaches the if
statement at which point the conditional expression is evaluated. If the conditional expression

Built-In Description Example

isinstance() Returns True if object is
instance of specified type

isinstance(json_string, str)

issubclass() Returns True if object is
instance of subclass type

issubclass(employee, Person)

Table 13-5: Python Type Checking Built-In Functions

Chapter 13: Control Flow Branching Statements

Computer Scripting Techniques with Python © 2023 Pulp Free Press 389

0
0
0
0
1
1
0
1

evaluates to true, the program executes the set of statements specified by the if statement. If the
conditional expression evaluates to false, the if statement’s code is bypassed and processing con-
tinues. (Notice how I had to use an if statement to explain how the if statement works!)

OK, let’s take a look at a simple if statement in action. Example 13.2 gives the code for a
short program that checks the value of a datetime weekday name string and proceeds accordingly.

13.2 simple_if_statement.py
1 """Demonstrate the use of a simple if statement."""
2
3 from datetime import datetime
4
5 def main():
6 today = datetime.now()
7 print(f'Today\'s Date and Time in ISO Format: {today.isoformat()}')
8 print(f'Today\'s Weekday Number: {today.isoweekday()}')
9 print(f'Today\'s Weekday Name: {today.strftime("%A")}')
10
11 if (today.strftime('%A') == 'Saturday') or (today.strftime('%A') == 'Sunday'):
12 print('I love the weekends, don\'t you?')
13
14
15 if __name__ == '__main__':
16 main()

Referring to example 13.2 — Line 1 starts with an optional module-level doc comment that
explains the purpose of the program. Line 3 imports Python’s datetime module. The main()
function defined starting on line 5 is where all the action takes place. On line 6, I call the date-
time.now() function and assign the result to the variable named today. I then use the today vari-
able in the print statements on lines 7 through 9 to demonstrate a few commonly-used functions of
the datetime object.

Continuing with example 13.2 — The if statement on line 11 checks the value of the week-
day name returned by the datetime.strftime() function and if it matches either the string
'Saturday' or 'Sunday' then the print statement on line 12 executes. If the weekday name is
not 'Saturday' or 'Sunday' then line 12 is not executed and the program exits because it runs
out of statements to execute. Figure 13-3 shows the results of running this program on a Saturday.

Figure 13-2: if Statement

Branching Statements Chapter 13: Control Flow

390 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
1
0
1

2.1.1 Use Parentheses To Indicate Operator Precedence

Again, referring to example 13.2 — Notice the conditional expression on line 12 consists of
two subexpressions formed with the equality operator ==. I then apply the logical or to those two
subexpressions. I have also used parentheses to explicitly group the subexpressions. It is not
strictly necessary to use parentheses as the operators have what is known as precedence. In this
example, the comparison operators have a higher precedence than the logical operators, so the
subexpressions that use the equality operator == are evaluated first followed by the application of
the logical operator or.

I recommend you use parentheses to explicitly indicate your intentions in a complex condi-
tional expression and do not rely on your memory of operator precedence. Doing so will make
your code easier to read and understand, and more importantly, it will make it easier for you to
figure out why your conditional expression isn’t working as you intended.

Pro Tip: Use parentheses to explicitly indicate operator precedence. Doing so will reduce logical errors
in complex conditional expressions while at the same time making your code easier to read and compre-
hend.

2.2 If/Else Statement

The if statement can be combined with an else clause to form an if/else statement as illus-
trated in figure 13-4. Whereas the simple if statement presents only one alternate path of execu-
tion, an if/else statement presents two. One path executes if the conditional expression
evaluates to true, and the alternate path executes if the conditional expression evaluates to false.
Example 13.3 builds upon the previous example and demonstrates the use of an if/else state-
ment.

13.3 if_else_statement.py
1 """Demonstrate the use of an if/else statement."""
2
3 from datetime import datetime
4
5 def main():
6 today = datetime.now()
7 print(f'Today\'s Date and Time in ISO Format: {today.isoformat()}')
8 print(f'Today\'s Weekday Number: {today.isoweekday()}')
9 print(f'Today\'s Weekday Name: {today.strftime("%A")}')
10

Figure 13-3: Results of Running Example 13.2

Chapter 13: Control Flow Branching Statements

Computer Scripting Techniques with Python © 2023 Pulp Free Press 391

0
0
0
0
1
1
0
1

11 if (today.strftime('%A') == 'Saturday') or (today.strftime('%A') == 'Sunday'):
12 print('I love the weekends, don\'t you?')
13 else:
14 print(f'Oh, too bad, it\'s {today.strftime("%A")} and you must go to work!')
15
16
17 if __name__ == '__main__':
18 main()
19

Referring to 13.3 — I’ve added an else clause on line 13. The if/else statement now reads
like so: if the weekday name is either 'Saturday' or 'Sunday' execute line 12, else, execute
line 14. It just happens to now be a beautiful Sunday morning as I write this, and figure 13-5
shows the results of running this program.

To test the else clause on a Sunday, I’ll need to make a slight modification to the code and
manually set the date. Example 13.4 lists the modified code.

Figure 13-4: if/else Statement

Figure 13-5: Results of Running Example 13.3

Branching Statements Chapter 13: Control Flow

392 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
1
0
1

13.4 if_else_statement.py (Mod 1)
1 """Demonstrate the use of an if/else statement."""
2
3 from datetime import datetime
4
5 def main():
6 #today = datetime.now()
7 today = datetime(2024, 1, 15)
8 print(f'Today\'s Date and Time in ISO Format: {today.isoformat()}')
9 print(f'Today\'s Weekday Number: {today.isoweekday()}')
10 print(f'Today\'s Weekday Name: {today.strftime("%A")}')
11
12 if (today.strftime('%A') == 'Saturday') or (today.strftime('%A') == 'Sunday'):
13 print('I love the weekends, don\'t you?')
14 else:
15 print(f'Oh, too bad, it\'s {today.strftime("%A")} and you must go to work!')
16
17
18 if __name__ == '__main__':
19 main()
20

Referring to example 13.4 — I commented out line 6, which used the datetime.now()
method to return the current date and time, and I am now setting a specific date by passing in year,
month, and day arguments to the datetime constructor. This date, which is a Monday, will allow
me to test the else clause as shown in figure 13-6.

2.3 Single vs. Double Quotes

Before moving on, I’d like to comment on the use of single and double quotes in these last two
example programs. The Python coding standard advises to be consistent with your use of quota-
tion marks. As you are now well aware, you can use single or double quotation marks to indicate
strings. However, you will encounter instances where a string enclosed in single quotation marks
will need to include a single quotation mark, as in the case of contractions. (i.e., it’s, I’m, you’re,
etc.) Since I have used single quotes for my strings in the print() functions, I must use an escape
sequence to use a single quote within the single-quoted string. For example, on line 13 of the pre-
vious example I have the following print() statement:

print('I love the weekends, don\'t you?')

The escape sequence for a single quote is a backslash followed by the single-quote character
'\''. Common escape sequences you’ll find helpful include tab '\t', line feed '\n', and car-
riage return '\r'. These last two are often used together like so: '\r\n'. For a complete list of
escape sequences see Appendix B — “Escape Sequences” on page 526.

Figure 13-6: Results of Running Example 13.4

Chapter 13: Control Flow Branching Statements

Computer Scripting Techniques with Python © 2023 Pulp Free Press 393

0
0
0
0
1
1
0
1

2.4 If/Elif/Else Statement

If you need to present more than two alternative execution paths you’ll need to add one or
more elif clauses to your if statement. Figure 13-7 gives the general structure of an if/elif/
else statement.

Referring to figure 13-7 — Note first that I’m only showing one elif clause above, but you
can use as many elif clauses as you require. (However, after more than a handful of elif clauses
I recommend using the match statement covered in the next section.) The else clause is optional
and is used to provide a default alternate execution path. In other words, if the conditional expres-
sions for the if and elif clauses evaluate to false, then the else clause is used to perform some
type of action as is shown in example 13.5.

13.5 if_elif_else_statement.py
1 """Demonstrate the use of an if/elif/else statement."""
2
3 from datetime import datetime
4
5 def main():
6
7 try:

Figure 13-7: if/elif/else Statement

Branching Statements Chapter 13: Control Flow

394 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
1
0
1

8
9 user_input = input("Enter yyyy mm dd: ").split()
10 year = int(user_input[0])
11 month = int(user_input[1])
12 day = int(user_input[2])
13
14 today = datetime(year, month, day)
15 weekday_name = today.strftime('%A')
16 print(f'Today\'s Date and Time in ISO Format: {today.isoformat()}')
17 print(f'Today\'s Weekday Number: {today.isoweekday()}')
18 print(f'Today\'s Weekday Name: {weekday_name}')
19
20 if (weekday_name == 'Saturday') or (weekday_name == 'Sunday'):
21 print(f'It\'s {weekday_name}! I love the weekends, don\'t you?')
22 elif weekday_name == 'Monday':
23 print('It\'s manic Monday -- I wish it were Sunday!')
24 elif weekday_name == 'Tuesday':
25 print(f'It\'s {weekday_name} -- I have class {weekday_name} evening.')
26 elif weekday_name == 'Wednesday':
27 print(f'I have a doctor\'s appointment on {weekday_name}!')
28 elif weekday_name == 'Thursday':
29 print(f'I devote {weekday_name}s to fasting.')
30 else:
31 print(f'It\'s {weekday_name}! The weekend is almost here!')
32 except Exception as e:
33 print(f'Problem processing date values. Please try again!: {e}')
34
35
36 if __name__ == '__main__':
37 main()
38

Referring to example 13.5 — When this program executes, it prompts the user to enter a date
in yyyy mm dd format. The input string is split at the spaces by the string.split() method, and
each element of the resulting array of strings is converted into an int on lines 10 through 12 and
assigned to the corresponding year, month, and day variables from which a datetime object is cre-
ated on line 14. Figure 13-8 shows the results of running this program.

Figure 13-8: Results of Running Example 13.5

Chapter 13: Control Flow Branching Statements

Computer Scripting Techniques with Python © 2023 Pulp Free Press 395

0
0
0
0
1
1
0
1

2.5 Match Statement

The match statement first appeared in Python 3.10 and can be used in place of an if/elif/
else statement that contains multiple elif clauses. While there is nothing wrong with complex
if/elif/else statements, the match statement provides a cleaner, more concise, and easier to
read alternative. The general structure of a match statement is shown in figure 13-9.

Referring to figure 13-9 — The subject expression is not a conditional expression, rather, it is
a subject that is compared against each of the case patterns. If the subject matches one of the
case patterns, the code associated with that case is executed. You can also provide a default
case that executes if no case patterns match the subject.

Example 13.6 employs a match statement to rework the previous example.
13.6 match_statement.py

1 """Demonstrate the use of the match statement."""
2
3 from datetime import datetime
4
5 def main():
6
7 try:
8
9 user_input = input("Enter yyyy mm dd: ").split()
10 year = int(user_input[0])
11 month = int(user_input[1])
12 day = int(user_input[2])
13
14 today = datetime(year, month, day)
15 weekday_name = today.strftime('%A')
16 print(f'Today\'s Date and Time in ISO Format: {today.isoformat()}')
17 print(f'Today\'s Weekday Number: {today.isoweekday()}')
18 print(f'Today\'s Weekday Name: {weekday_name}')
19

Figure 13-9: match Statement

Branching Statements Chapter 13: Control Flow

396 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
1
0
1

20 match weekday_name:
21 case 'Saturday' | 'Sunday':
22 print(f'It\'s {weekday_name}! I love the weekends, don\'t you?')
23 case 'Monday':
24 print('It\'s manic Monday -- I wish it were Sunday!')
25 case 'Tuesday':
26 print(f'It\'s {weekday_name} -- I have class {weekday_name}')
27 case 'Wednesday':
28 print(f'I have a doctor\'s appointment on {weekday_name}!')
29 case 'Thursday':
30 print(f'I devote {weekday_name}s to fasting.')
31 case _:
32 print(f'It\'s {weekday_name}! The weekend is almost here!')
33
34 except Exception as e:
35 print(f'Problem processing date values. Please try again!: {e}')
36
37
38 if __name__ == '__main__':
39 main()
40

Referring to example 13.6 — Starting on line 20, the match statement compares the subject
weekday_name, which is a string in this example, against each case pattern, which also happen
to be strings. Patterns appear between the case keywords and the colons ':'. Note that the first
case specifies two patterns 'Saturday' | 'Sunday'. The '|' operator is used to present multi-
ple patterns in one case. Figure 13-10 shows the results of running this program.

Referring to figure 13-10 — I’ve run the program twice with dates that fall on a Sunday and a
Monday respectively. I’ll leave it up to you to validate the remaining cases. Note that in this sec-
tion I have presented only a tiny fraction of the match statement’s capabilities.

Figure 13-10: Results of Running Example 13.6

Chapter 13: Control Flow Looping Statements

Computer Scripting Techniques with Python © 2023 Pulp Free Press 397

0
0
0
0
1
1
0
1

Quick Review

Use an if/elif/else statement when you need to choose between alternate execution paths
in your code. A simple if statement provides one alternate execution path. An if/else statement
provides two alternate execution paths. An if/elif/else provides multiple alternate execution
paths. You can use as many elif clauses as required, though too many tends to clutter the code.

Use the match statement as an alternative to complex if/elif/else statements. A match
statement compares a subject expression against one or more case patterns. Multiple pattern
choices can be combined into one case with the '|' operator.

3 Looping Statements

Looping statements allow you to repeatedly execute blocks of code. Python provides two
types of looping statements: the for statement and the while statement. Let’s begin with the for
statement.

3.1 For Statement

The for statement is used primarily to execute a designated block of code a set number of
times. Each time a for statement executes its designated block of code it is referred to as an itera-
tion. Figure 13-11 provides a diagram for a general for statement.

Referring to figure 13-11 — The for statement processes an iterable sequence. Common iter-
able sequences include strings, lists, or a range of integer values. Example 13.7 shows a string
being processed by a for loop.

13.7 simple_for_statement.py
1 """Demonstrate the use of a simple for statement."""
2
3 def main():
4 try:
5 input_string = input('Enter input string: ')

Figure 13-11: for Statement

Looping Statements Chapter 13: Control Flow

398 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
1
0
1

6 separator_char = input('Enter separator char: ')
7 for s in input_string:
8 print(f'{s}{separator_char}', end='')
9
10 except Exception as e:
11 print(f'Problem processing input string: {e}')
12
13
14 if __name__ == '__main__':
15 main()
16

Referring to example 13.7 — On line 5, this program prompts the user to enter a string with
the help of the built-in input() function. Note that everything you type at the console is consid-
ered a string in Python. When you hit Enter, the string value returned by the input() function is
assigned to the input_string variable. On line 6, another request is made for the user to enter a
separator character. This could be anything the user types at the keyboard including multiple char-
acters. (Remember: Everything entered at the console is a string, whether it contains one charac-
ter or multiple characters.) The for statement on line 7 steps through each element of the
input_string and executes the print() function on line 8, which uses a formatted string (a.k.a.,
an 'f' string) to print each character s from the input_string along with the separator_char.
Figure 13-12 shows the results of running this program first with one space separator then with
two spaces as the separator.

Referring to figure 13-12 — I recommend running this program and studying the code. You
can enter anything for the input string and separator char and obtain some pretty goofy results.
You could totally use this little application to create strangely encoded messages. I’ll leave that to
you as an exercise.

Referring again to example 13.7 — The for statement on line 7 iterates over the string con-
tained in the variable input_string. A string is a sequence of characters. You’ll learn more about
sequences in chapter 14. The for statement executes as many times as there are characters in the
input_string sequence. Let’s focus on the for statement as it appears on line 7:

for s in input_string:
print(f'{s}{separator_char}’, end='')

You can read this as: "for each element s in the sequence input_string, print the element s fol-
lowed by the string separator_char to the console."

Figure 13-12: Results of Running Example 13.7 Using Blank Spaces as Separator Chars

Chapter 13: Control Flow Looping Statements

Computer Scripting Techniques with Python © 2023 Pulp Free Press 399

0
0
0
0
1
1
0
1

I just happened to use the letter 's' to denote each element in the input_string. I could have
used any letter, like 'c' for example:

for c in input_string:
print(f'{c}{separator_char}’, end='')

As you’ll learn later, a sequence could be a sequence of just about anything and what you
choose to name the sequence (in this case I named the variable input_string) and each element
of the sequence processed by the for statement (s, c, or whatever) is entirely up to you.

3.1.1 Processing A Range Of Numbers

Sometimes, you want to execute a block of code for n amount of times. You can specify the n
with the help of the built-in range() function. Let’s look first at a short program that prints five
integers to the console.

13.8 for_five_times.py
1 """Demonstrate built-in range() function."""
2
3 def main():
4 for i in range(5):
5 print(f'{i} ', end='')
6
7 if __name__ == '__main__':
8 main()
9

Referring to example 13.8 — The for statement on line 4 employs the built-in range() func-
tion to create an iterable sequence of integers 0 through 4. Figure 13-13 shows the results of run-
ning this program.

Referring again to example 13.8 — Actually, the range() function is not a function; it’s an
immutable sequence type. You’ll learn more about these in chapter 8. In this example, I supplied
range() with a stop value of 5. Given only a stop value n, range(n) will generate a sequence of
integers from 0 to n-1, as you can see from the program’s output in figure 13-13 above. You can
more precisely control the sequence values by supplying range() with start, stop, and step values
as demonstrated in example 13.9.

13.9 for_start_stop_step.py
1 """Demonstrate for statement with range(start, stop, step)."""
2
3 def main():
4 for i in range(5, 100, 5):
5 print(f'{i} ', end='')
6
7 if __name__ == '__main__':
8 main()
9

Figure 13-13: Results of Running Example 13.8

Looping Statements Chapter 13: Control Flow

400 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
1
0
1

Referring to example 13.9 — The range() is now specified to start at 5, stop at 100, and step
5 units with each iteration. Figure 13-14 shows the results of running this program.

3.1.2 For Loop With else Clause

You can add an else clause to a for loop. You would do this when you want to execute a
block of code when the for loop completes execution. Example 13.10 provides a short program
showing the for/else in action.

13.10
1 """Demonstrate the use of the for/else statement."""
2
3 def main():
4 for i in range(5, 100, 5):
5 print(f'{i} ', end='')
6 else:
7 print('\r\nThe for statement executed without a break.')
8
9
10 if __name__ == '__main__':
11 main()
12

Referring to example 13.10 — If the for statement runs to completion, the else clause on
line 6 executes, which results in the execution of line 7. Figure 13-15 shows the results of running
this program.

At this point, you will rightly be wondering, "When might a for loop not execute to comple-
tion?" Good question. If the for loop encounters a break statement during processing, the for
loop is terminated, and the else clause is skipped. A simple example will suffice to demonstrate a
typical search scenario as example 13.11 shows.

13.11 for_break_else_demo.py
1 """Demonstrate the use of break statement within a for loop."""
2
3 def main():
4 input_text = input('Enter Text To Be Searched: ').split()
5 search_string = input('Enter Search String: ')
6

Figure 13-14: Results of Running Example 13.9

Figure 13-15: Results of Running Example 13.10

Chapter 13: Control Flow Looping Statements

Computer Scripting Techniques with Python © 2023 Pulp Free Press 401

0
0
0
0
1
1
0
1

7 for s in input_text:
8 if search_string in s:
9 print('Found it!')
10 break
11 else:
12 print(f'Search string \"{search_string}\" not found.')
13
14
15 if __name__ == '__main__':
16 main()
17

Referring to example 13.11 — This program prompts the use to enter some text to be searched
followed by search string. The text to be searched is split on the spaces contained within the
string, which is the default delimiter character for the string.split() method. The for state-
ment on line 7 iterates over the input_text variable which represents an iterable list of strings.
The if statement on line 8 checks to see if the search_string is contained within 's'. If a match
is made, the print() statement on line 9 executes followed by the break statement on line 10,
which exits the for loop and skips the else clause. If the for loop manages to iterate through all
the strings contained within input_text and fails to find a match, the else clause executes as
shown in figure 13-16.

3.2 While Statement

Choose a while statement when you need to repeat a block of code as long as a conditional
expression evaluates to true. Figure 13-17 illustrates a general while statement.

Up until now, all the examples in this chapter have executed once and exited right away.
Sometimes this is the behavior you desire in a program. Most often, however, you want to per-
form some action until the user decides they want to quit. Example 13.12 reworks the earlier
search example with the help of a while statement.

13.12 while_statement
1 """Demonstrate the use of the while statement."""
2
3 def main():
4 input_text = ''
5 while not ('quit' in input_text):
6 if not (input_text == ''):

Figure 13-16: Results of Running Example 13.11

Looping Statements Chapter 13: Control Flow

402 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
1
0
1

7 search_string = input('Enter Search String: ')
8
9 for s in input_text:
10 if search_string in s:
11 print('Found it!')
12 break
13 else:
14 print(f'Search string \"{search_string}\" not found.')
15
16 input_text = input('Enter Text To Be Searched: ').split()
17
18
19 if __name__ == '__main__':
20 main()
21

Referring to example 13.12 — The variable input_text is initialized with an empty string.
The while statement begins on line 5 and is read, "while not the string 'quit' in input_text". I have
used parentheses to indicate my intentions with regards to operator precedence. Note that I could
have also written the conditional expression like so:

while 'quit' not in input_text:

In this case, I believe this is the most natural way to construct the conditional expression. No
parentheses are required because the operator precedence is obvious. But this illustrates a good
point. Sometimes, in the heat of battle, the code your write is not necessarily your best, most ele-
gant code. The act of coding mimics that of writing. I always consider my first attempt a rough
draft, and several revisions may be required to ultimately produce a polished work.

Again referring to example 13.12 — First, note how the code is indented. When you first start
to write complex Python programs, you will struggle with indenting, but indenting matters in
Python. All code indented underneath the while statement belongs to the while statement. The
purpose of the if statement on line 6 is to avoid having the user enter a search string when the
input_text variable is initially set to the empty string. Everything indented under the if state-
ment belongs to the if statement. The user doesn’t enter the text to be searched until line 16,

Figure 13-17: while Statement

Chapter 13: Control Flow Looping Statements

Computer Scripting Techniques with Python © 2023 Pulp Free Press 403

0
0
0
0
1
1
0
1

which is the last statement within the while loop. If the user enters anything other than 'quit', the
while loop continues to execute. Figure 13-18 shows the results of running this program.

3.2.1 While/Else Statement

You can also add an else clause to a while statement. The else clause executes when the
while statement’s conditional expression no longer holds true. Example 13.13 adds an else
clause to the previous example.

13.13 while_else_statement.py
1 """Demonstrate the use of the while/else statement."""
2
3 def main():
4 input_text = ''
5 while 'quit' not in input_text:
6 if not (input_text == ''):
7 search_string = input('Enter Search String: ')
8
9 for s in input_text:
10 if search_string in s:
11 print('Found it!')
12 break
13 else:
14 print(f'Search string \"{search_string}\" not found.')
15
16 input_text = input('Enter Text To Be Searched: ').split()
17 else:
18 print('Thank you for playing the search game!')
19
20
21 if __name__ == '__main__':
22 main()
23

Referring to example 13.13 — On line 17, I have added an else clause which executes when
the user enters 'quit' to exit program. Figure 13-19 shows the results of running this program.

Figure 13-18: Results of Running Example 13.12

Looping Statements Chapter 13: Control Flow

404 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
1
0
1

Quick Review

Python’s looping statements include the for and while statements. Choose a for statement
when you need to process elements contained within a sequence or to repeat a code block for a set
about of time.

Use the built-in range() function if you need to generate a list of integers.
Choose a while statement when you need to execute a block of code based on the results of a

conditional expression.
Both the for and while statements support the use of an else clause. When used with a for

statement, the else clause executes only if the for statement runs to completion. The else clause
is skipped if the for statement exits early via a break statement.

When used with a while statement, the else clause executes when the conditional expression
evaluates to false.

Figure 13-19: Results of Running Example 13.13

Chapter 13: Control Flow Branching And Looping Statements Quick Reference

Computer Scripting Techniques with Python © 2023 Pulp Free Press 405

0
0
0
0
1
1
0
1

4 Branching And Looping Statements Quick Reference

Table 13-6 provided a quick reference guide for the control flow statements discussed in this
chapter. If you’re new to programming, you’ll find it helpful to print the quick reference guide
and keep if close at hand. Better yet, add it to your Engineer’s Notebook.

Statement Diagram Usage

Branching Statements

if/elif/else Provides alternative execution paths
based on results of conditional
expression.

Use a simple if statement if you
need one alternative execution path.

Use an if/else statement if you
need two alternative execution
paths.

Use an if/elif/else statement if
you need two or more alternative
execution paths.

match Provides alternative execution paths
based on the evaluation of a subject
expression against one or more case
patterns.

Favor the match statement over the
use of a complex if/elif/else
statement for improved readability

Table 13-6: Branching and Looping Statements Quick Reference

Branching And Looping Statements Quick Reference Chapter 13: Control Flow

406 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
1
0
1

Summary

Python’s control flow statements take action based on the results of conditional expressions.
You can build conditional expressions from Python’s comparison, logical, identity, and member-
ship operators. Two additional built-in functions you’ll find helpful include isinstance() and
issubclass().

Various types of Python objects are considered inherently truthy or falsy. At minimum, you
should memorize that Python’s boolean literal True and the numeric value 1 always evaluate to
true. Conversely, the boolean literal False and the numeric value 0 always evaluate to false. As a
rule, non-empty data structures and strings evaluate to true, while empty data structures and
strings evaluate to false.

Always verify the truthy or falsy behavior of an object before relying on its behavior in your
code.

Use an if/elif/else statement when you need to choose between alternate execution paths
in your code. A simple if statement provides one alternate execution path. An if/else statement
provides two alternate execution paths. An if/elif/else provides multiple alternate execution
paths. You can use as many elif clauses as required, though too many tends to clutter the code.

Looping Statements

for Provides repeated execution for set
number of iterations. Select when
you need to process elements in a
sequence or execute a block of code
n number of times.

An optional else clause will exe-
cute if the for statement runs to
completion. The else clause is
skipped if the for loop exits early
due to a break statement.

while Executes a block of code repeatedly
if the conditional expression evalu-
ates to true.

An optional else clause will exe-
cute when the while statement’s
conditional expression evaluates to
false.

Statement Diagram Usage

Table 13-6: Branching and Looping Statements Quick Reference (Continued)

Chapter 13: Control Flow Branching And Looping Statements Quick Reference

Computer Scripting Techniques with Python © 2023 Pulp Free Press 407

0
0
0
0
1
1
0
1

Use the match statement as an alternative to complex if/elif/else statements. A match
statement compares a subject expression against one or more case patterns. Multiple pattern
choices can be combined into one case with the '|' operator.

Python’s looping statements include the for and while statements. Choose a for statement
when you need to process elements contained within a sequence or to repeat a code block for a set
about of time.

Use the built-in range() function if you need to generate a list of integers.
Choose a while statement when you need to execute a block of code based on the results of a

conditional expression.
Both the for and while statements support the use of an else clause. If used with a for state-

ment, the else clause executes only if the for statement runs to completion. The else clause is
skipped if the for statement exits early via a break statement.

If used with a while statement, the else clause executes when the conditional expression
evaluates to false.

Skill-Building Exercises

1. Research: Search the Internet for more information about Python conditional expressions.
Study the formulation of complex conditional expressions.

2. Research: Create a table in your Engineers Notebook that lists the Python operators in order of
precedence.

3. Research: Search the Internet for examples of complex if/elif/else statements in action. A
good place to start would be GitHub.

4. Research: Dive deeper into the use of the match statement for pattern matching.

5. Engineers Notebook Preparation: Print the Branching and Looping Statements Quick Refer-
ence Guide provided in this chapter and copy or insert it into your Engineers Notebook.

Suggested Projects

1. Hands On Coding: Enter and run all the examples listed in this chapter. Study each line of
code to ensure you understand what it’s doing.

2. Validate All Cases: Run example 13.6 and enter dates that test all match statement cases.

Branching And Looping Statements Quick Reference Chapter 13: Control Flow

408 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
1
0
1

Self-Test Questions

1. Which branching statements does Python support?

2. What’s the primary difference between an if/elif/else statement and a match statement.

3. How many elif clauses can an if statement support?

4. When does an if statement’s else clause execute?

5. When would you select a match statement over an if/elif/else statement?

6. Which looping statements does Python support?

7. Which looping statement would you use to iterate over elements contained within a sequence?

8. What’s the built-in range() function used for?

9. When does a for statement’s else clause execute?

10. What’s the purpose of a break statement?

11. When does a while statement’s else clause execute?

References

Python Documentation, Compound Statements, https://docs.python.org/3/reference/com-
pound_stmts.html#

Python Documentation, range() Function, https://docs.python.org/3/library/func-
tions.html#func-range

W3 School Documentation, Python Operators, https://www.w3schools.com/python/
python_operators.asp

PEP 622, Structural Pattern Matching, https://peps.python.org/pep-0622/

Martin McBride, Medium.com, The Hidden Traps of Python Truthy Values, https://
medium.com/geekculture/the-hidden-traps-of-python-truthy-values-51224e0413ab

https://docs.python.org/3/reference/compound_stmts.html#
https://docs.python.org/3/reference/compound_stmts.html#

Chapter 13: Control Flow Branching And Looping Statements Quick Reference

Computer Scripting Techniques with Python © 2023 Pulp Free Press 409

0
0
0
0
1
1
0
1

Notes

Branching And Looping Statements Quick Reference Chapter 13: Control Flow

410 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
1
0
1

	Ch-13: Control Flow
	1.1 What Is True? What Is False?
	1.2 Comparison Operators
	1.3 Logical Operators
	1.4 Identity Operators
	1.5 Membership Operators
	1.6 Type Checking
	2 Branching Statements
	2.1 If Statement
	2.1.1 Use Parentheses To Indicate Operator Precedence

	2.2 If/Else Statement
	2.3 Single vs. Double Quotes
	2.4 If/Elif/Else Statement
	2.5 Match Statement

	3 Looping Statements
	3.1 For Statement
	3.1.1 Processing A Range Of Numbers
	3.1.2 For Loop With else Clause

	3.2 While Statement
	3.2.1 While/Else Statement

	4 Branching And Looping Statements Quick Reference

