
Computer Scripting Techniques with Python © 2023 Pulp Free Press 411

0
0
0
0
1
1
1
0

00001110

Ch-14: Sequences

Learning Objectives
• Define the term sequence
• Explain the differences between mutable and immutable sequences
• Explain the purpose of a list
• Process multiple lists in parallel with the zip() function
• Explain the purpose of a tuple
• Explain the differences between a list and a tuple
• List and describe common sequence operations
• List and describe the methods supported by list types
• Use list comprehensions to create a list
• Add items to a list
• Remove items from a list
• Convert a list into a JSON string
• Convert a JSON string into a list
• Iterate over strings, lists, and tuples
• Access tuple elements via indexers

CHAPTER 14

Sequences

Chapter 14: Sequences

412 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
1
1
0

Introduction

As soon as you begin to create programs that go beyond simply printing “Hello, World!” to
the console, you’ll find the need to create, store, and process sequentially arranged data such as a
list of numbers, a string of characters, or a row in a spreadsheet, just to name a few. Such data in
Python is referred to as a sequence. Sequences are both a fundamental concept in Python as well
as a fundamental data type. A deep understanding of sequences is vital to understanding strings,
lists, tuples, and ranges.

Sequences come in two flavors: mutable and immutable. A mutable sequence is one whose
elements can be added, modified, and removed. Conversely, the elements contained within an
immutable sequence cannot be modified. Understanding the differences between mutable and
immutable sequences unlocks the key to understanding the differences between lists and strings.

Python lists are similar in concept to arrays in languages like C or C++. The difference
between arrays and lists is that arrays are lightweight and close to the hardware whereas Python
lists are complex objects that support a wide range of operations.

Along the way you will learn how to use Python’s built-in functions len(), min(), and
max(), and how to perform sequence slicing. The primary purpose of this chapter is to show you
how to create and process sequences the Pythonic way.

I will also introduce you to JavaScript Object Notation (JSON). JSON has emerged as the de
facto standard for the exchange of information between computer systems. I’ll show you how to
generate JSON from lists and how to convert JSON lists to Python lists. Understanding JSON
opens you up to a world of online data resources.

1 An Overview Of Sequences

Python’s sequence types include lists, tuples, and ranges. Python also includes specialized
types for storing and processing text strings and binary data. You have already encountered lists
and ranges in earlier parts of the book. You have also used strings, which represent a specialized
sequence type. All you really need to know to quickly gain proficiency using sequences is what
they are, how to create them, the differences between mutable and immutable sequences, and the
operations each supports.

1.1 What Is A Sequence?

A sequence is an ordered set of elements that can be accessed individually via a positive or
negative integer index. As the saying goes, a picture is worth a thousand words, so let’s take a
look at figure 14-1.

Referring to figure 14-1 — The string literal "Hello World!" is assigned to string_vari-
able. A string is an immutable sequence of characters. The "Hello World!" string contains 12
character elements, each of which can be accessed individually via a positive or negative integer
index number enclosed in square brackets. Thus, string_variable[0] accesses the first element
of the sequence, string_variable[4] accesses the fifth element of the sequence, and string_-
variable[11] accesses the last element of the sequence.

Chapter 14: Sequences

Computer Scripting Techniques with Python © 2023 Pulp Free Press 413

0
0
0
0
1
1
1
0

The three most common types of sequences you will use in your programs include strings,
lists, and ranges, with tuples coming in a close fourth. I actually went quite a while programming
in Python without seeing the need for tuples, but they do come in very handy in many situations.

If you intend to process binary data then you’ll use byte sequences with the most common use
cases being digital image manipulation and data transfer between client & server applications.

1.2 Immutable Vs. Mutable Sequences

Sequences are either immutable or mutable. The term immutable means that once a sequence
is created, its elements cannot be modified. A mutable sequence is one whose elements can be
modified and deleted. Strings are immutable sequences as are tuples and bytes objects. Lists and
byte arrays are mutable. I discuss strings, lists, and tuples in greater detail later in this chapter. I’ll
introduce you to byte sequences later in the book.

1.3 Common Sequence Operations

Table 14-1 lists common operations supported by both mutable and immutable sequences.

Operation Result

x in sequence Returns True if item in sequence equals x; otherwise False

x not in sequence Returns False if item in sequence equals x; otherwise True

sequence_1 + sequence_2 The concatenation of sequence_1 and sequence_2

sequence * n
or
n * sequence

Add sequence to itself n times

Table 14-1: Operations Common To Sequences

Figure 14-1: Sequence Showing Element vs. Index Numbering

Strings Chapter 14: Sequences

414 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
1
1
0

Referring to table 14-1 — The behavior of a few of these operators varies depending on the
type of sequence to which they are applied. I’ll bring your attention to special cases as they arise.

Quick Review

Python’s sequence types include lists, tuples, and ranges. Python also includes specialized
types for storing and processing text strings and binary data.

A sequence is an ordered set of elements that can be accessed individually via a positive or
negative integer index. The three most common types of sequences you will use in your programs
include strings, lists, and ranges.

Sequences are either immutable or mutable. The term immutable means that once a sequence
is created, its elements cannot be modified. A mutable sequence is one whose elements can be
modified and deleted.

2 Strings

Strings are immutable sequences. Their immutable nature can cause confusion at times, espe-
cially if you’re a novice programmer. The primary reason for the confusion is because an opera-
tion applied to a string results in new string, leaving the original string unaffected. If you keep this
in mind when working with strings you should be good to go.

2.1 What Is A String?

A string (str) is an immutable text sequence of Unicode characters. Each element of a string
is actually a string of length 1 and points to a Unicode code point. Strings have many uses and a
deep understanding of how strings behave is crucial to becoming a proficient Python programmer.
Before going further, let’s look at a few ways to create strings within your program.

sequence[i] Returns ith element of sequence

sequence[i:j] Returns slice of sequence from i to j

sequence[i:j:k] Returns slice of sequence from i to j every kth element (step)

len(sequence) Returns length of sequence (element count)

min(sequence) Returns smallest item in sequence

max(sequence) Returns largest item in sequence

sequence.index(x[, i[, j]]) Returns the index of the first occurrence of x in sequence, at or after
index i and before index j.

sequence.count(x) Returns total number of occurrences of x in sequence

Reference: https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range

Operation Result

Table 14-1: Operations Common To Sequences (Continued)

Chapter 14: Sequences Strings

Computer Scripting Techniques with Python © 2023 Pulp Free Press 415

0
0
0
0
1
1
1
0

14.1 creating_strings.py
1 """Demonstrate string creation."""
2
3 def main():
4 # Initialize with empty string
5 empty_string = ''
6
7 # Initialize with string literal in single quotes
8 first_name = 'Rick'
9
10 # Initialize with string literal in double quotes
11 last_name = "Miller"
12
13 # Initialize with a Unicode character code
14 copyright = '\u00A92024'
15
16 # Initialize with emoji
17 emoji = '\N{face with tears of joy} \N{smiling face with halo}' + \
18 '\N{kiss mark} \N{yawning face}'
19
20 print(f'Empty String: {empty_string}')
21 print(f'First Name: {first_name}')
22 print(f'Last Name: {last_name}')
23 print(f'Symbols: {copyright}')
24 print(f'Emoji: {emoji}')
25
26 for character in emoji:
27 print(f'{character} ', end='')
28
29
30 if __name__ == '__main__':
31 main()
32

Referring to example 14.1 — This short program demonstrates various ways to initialize
string variables. Note first that string literals can be enclosed in either single or double quotes. On
line 5, I’m initializing a variable named empty_string with two single quotes and no space
between them. On line 8, I define the first_name variable and assign to it the string literal
'Rick'. On line 10, I define the last_name variable and assign the string literal "Miller". On
line 14, I define a variable named copyright and assign to it a Unicode coded character
'\u00a9', which is the copyright symbol '©' followed by the year 2024. Next, on lines 17 and
18, I define a variable named emoji and assign to it several emoji characters referenced by their
CLDR short names, a list of which is located here:

https://www.unicode.org/emoji/charts/full-emoji-list.html
Note that which CLDR short names will actually work in your program depends on which

version of Python you are running and which version of the CLDR short names is available.
Here’s a plain text list of the Unicode character set:

https://www.unicode.org/Public/UNIDATA/UnicodeData.txt
Note that the characters used in the string literals on lines 8 and 11 are Unicode characters

(Basic Latin) and also part of the ASCII character set:
https://www.unicode.org/charts/PDF/U0000.pdf
If you intend for your code to be portable across different operating systems, I recommend

you stick with the Basic Latin (ASCII) characters. You can reference the Unicode Code Charts
here:

Strings Chapter 14: Sequences

416 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
1
1
0

http://www.unicode.org/charts/
Figure 14-2 shows the results of running this program in iTerm on MacOS.

Referring to figure 14-2 — The emoji’s print in iTerm running in MacOS, but you will not
have much luck with Git Bash or Linux terminals without custom configuration, which is beyond
the scope of this book, and generally unnecessary for most all programming tasks you are likely to
attempt, unless you plan to process emojis. Figure 14-3 shows the same code running on Git Bash
in Windows.

Note that if you have a burning desire to show emojis in Git Bash, you may, as an exercise,
follow the tips provided here: https://github.com/mintty/mintty/wiki/Tips#emojis.

Pro Tip: If you want your Python console program to be portable across operating systems, stick with
the Basic Latin (ASCII) Unicode Code Chart.

2.2 Common Operations On Strings

In this section, I will demonstrate a few of the most common operations you are likely to per-
form on strings. To demonstrate every operation possible would bore you to tears, so I’ll spare
you that terrible fate. Besides, I will introduce you to additional string operations not specifically
discussed in this section as you progress through the book and as the use case demands.

The most common operations you will perform on strings include concatenating (joining or
building), accessing individual elements, searching, slicing, determining length, and changing
case.

Figure 14-2: Results of Running Example 14.1 in iTerm on MacOS

Figure 14-3: Results of Running Example 14.1 in Git Bash on Windows

Chapter 14: Sequences Strings

Computer Scripting Techniques with Python © 2023 Pulp Free Press 417

0
0
0
0
1
1
1
0

2.3 Concatenation

Concatenation is the million dollar word for joining one string object with another. Note that
regardless of the method used, concatenating two immutable sequences together results in a new
immutable sequence. (i.e., joining two strings objects together results in a new string object.)
Example 14.2 demonstrates the most common ways to concatenate strings.

14.2 string_concatenation.py
1 """Demonstrate string concatenation."""
2
3 def main():
4 first_name = 'Rick'
5 last_name = 'Miller'
6 middle_initial = 'W'
7 # Use Concatenation Operator '+'
8 full_name = first_name + ' ' + middle_initial + ' ' + last_name
9 print(full_name)
10
11 age = 35
12 # Use Formatted String a.k.a. 'f' String
13 full_name_and_age = f'{first_name} {middle_initial} {last_name} {age}'
14 print(full_name_and_age)
15
16 # Long Strings with Concatenation Operator '+'
17 passage_one = 'This is an example of a string that must be broken apart ' \
18 'and spread across multiple lines of code.' \
19 '\n\tAuthor:' + full_name + ' ' + str(age)
20 print(passage_one)
21
22 # Long Strings with F Strings
23 passage_two = f'This is another long string being spread over ' \
24 f'multiple lines of code.\n\tAuthor: {full_name_and_age}'
25 print(passage_two)
26
27 # Long Strings with Three Double Quotes
28 passage_three = """This is a moderately long passage. The ancients knew
29 the secret to long life:
30 1. Eat a healthy diet,
31 2. Stay active, and
32 3. Get plenty of rest.
33 — Live — Love — Laugh —"""
34 print(passage_three)
35
36
37 if __name__ == '__main__':
38 main()
39

Referring to example 14.2 — There’s a lot going on in this short example. I start off by declar-
ing three string variables first_name, last_name, and middle_initial. I then use the concate-
nation operator '+' to join these variables together and assign the resulting string to the
full_name variable. I then print the full_name string to the console.

On line 11, I create an integer variable age with value 35. On line 13, I create the
full_name_and_age string variable and initialize it with the help of a formatted string (a.k.a., an
'f' string).

On line 17, I declare a variable named passage_one and spread the initialization over three
lines of code. Important items of note here are the use of the backslash '\' character to span lines

Strings Chapter 14: Sequences

418 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
1
1
0

and the use of the escape characters new line and tab '\n\t' to insert a new line and tab respec-
tively. Another important point to note is that when concatenating the integer variable age with a
string using the concatenation operator, you must first convert it into a string with the built-in
str() function.

On line 23, I use formatted strings to spread the initialization of the variable passage_two
across multiple lines.

Lastly, on line 28, I use a long string enclosed in triple-quotes to initialize the variable named
passage_three. Note that when you use triple quoted strings, the formatting of the string is liter-
ally interpreted. This means there is no need to include escaped new lines or tabs. One drawback
to triple-quoted strings is that they wrap all the way to the left-most margin (see line 29) unless
otherwise formatted.

Figure 14-4 shows the results of running this program.

2.4 Accessing Individual Characters

You can access individual characters within a string using array notation. Keep in mind that
strings are immutable sequences, you can only access individual characters as read-only. Example
14.3 shows how to access individual string characters using positive and negative index values.

14.3 element_access.py
1 """Demonstrate String Character Access."""
2
3 def main():
4 s = "These are the times that try men's souls. " \
5 "The summer soldier and the sunshine patriot will, " \
6 "in this crisis, shrink from the service of their country; " \
7 "but he that stands by it now, deserves the love and thanks of " \
8 "man and woman. (Thomas Pain, \"The Crisis\", 23 December 1776)"
9 # Access characters with array notation
10 print(f'{s[0]}')
11 print(f'{s[-len(s)]}')
12
13 # Iterate over each character -- Non-Pythonic
14 for i in range(len(s)):
15 print(f'{s[i]}', end='')
16

Figure 14-4: Results of Running Example 14.2

Chapter 14: Sequences Strings

Computer Scripting Techniques with Python © 2023 Pulp Free Press 419

0
0
0
0
1
1
1
0

17 print()
18
19 # Iterate over each character -- Pythonic
20 for c in s:
21 print(f'{c.upper()}', end='')
22
23 if __name__ == '__main__':
24 main()
25

Referring to example 14.3 — On line 4, I initialize a string with the famous opening lines of
Thomas Paine’s The Crisis. Lines 10 and 11 illustrate how to access individual string elements
using positive and negative index values. Note on line 11 the use of the built-in len() function
which returns the length, or the number of characters in the string. This value is then negated to
yield a negative index value, which yields the string’s first character.

Line 14 shows how to iterate over a string’s characters in a rather non-Pythonic manner. By
non-Pythonic I mean via the use of index values obtained with the range() and len() functions.
Line 20, on the other hand, illustrates the idiomatic Pythonic approach to sequence iteration via
the use of an iterator. All Python sequence objects provide an iterator. Note that the upper()
method merely returns the upper case version of the character; the original character is left
unmodified. Figure 14-5 shows the results of running this program.

A few thoughts before moving on. I’ve never needed to access individual string characters,
and by extension list elements in general, via negative index values, however, you never know
when it may come in handy.

As shown above, use the upper() method to obtain upper-case characters, and use the
lower() method to obtain lower-case characters. Always remember — strings are immutable —
so calls to upper() and lower() return a new string in the desired format and leave the original
string unchanged.

2.5 Searching

Many times you need to search for substrings and patterns within a string, or count the occur-
rences of a substring within a string. In this section I will demonstrate the use of the in operator
and the str.find() and str.count() methods. Example 14.4 lists the example code.

14.4 string_search.py
1 """Demonstrate simple string searching."""
2
3 def main():

Figure 14-5: Results of Running Example 14.3

Strings Chapter 14: Sequences

420 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
1
1
0

4 s = 'Now friendship may be thus defined: a complete accord on all subjects\n' \
5 'human and divine, joined with mutual goodwill and affection. And with\n' \
6 'the exception of wisdom, I am inclined to think nothing better than this\n' \
7 'has been given to man by the immortal gods. There are people who give\n' \
8 'the palm to riches or to good health, or to power and office, many even\n' \
9 'to sensual pleasures. This last is the ideal of brute beasts; and of the\n' \
10 'others we may say that they are frail and uncertain, and depend less on\n' \
11 'our own prudence than on the caprice of fortune. Then there are those\n' \
12 'who find the "chief good" in virtue. Well, that is a noble doctrine. But\n' \
13 'the very virtue they talk of is the parent and preserver of friendship,\n' \
14 'and without it friendship cannot possibly exist. "Cicero"\n'
15
16 print(s)
17
18 # Is substring in string
19 if 'friendship' in s:
20 print('Yes, the word \"friendship\" is in the passage.')
21 else:
22 print('The word \"friendship\" not found.')
23
24 # At what index position does substring begin
25 # Start searching from 0 index (start of string)
26 print(f'The word \"friendship\" begins at index {s.find("friendship")}')
27
28 # At what index position does substring begin
29 # Start searching at index position n
30 print(f'The next occurence of \"friendship\" begins at index \
31 {s.find("friendship",5)}')
32
33 # Count the occurrences of the word friendship
34 print(f'The word \"friendship\" appears {s.count("friendship")} times.')
35
36
37 if __name__ == '__main__':
38 main()
39

Referring to example 14.4 — On line 4, I declare a string variable named 's' initialized with
a quote about friendship penned by the ancient Roman senator and writer Cicero. On line 19, I use
the in operator to see if the word "friendship" appears within the passage. On line 26, I use the
str.find() method to search for the substring "friendship" starting at the beginning of the pas-
sage. (i.e., s.find("friendship")) The find() method returns the starting index of the first
character of the substring within the containing string. In this case, the call to s.find("friend-
ship") returns the value 4. On line 30, I use another version of the str.find() method to start
searching at a particular index for the substring "friendship", in this case 5. Finally, on line 34, I
call the str.count() method to count the occurrences of the substring "friendship". Figure 14-6
shows the results of running this program.

Pro Tip: Use the in operator to see if a string contains a substring. You can also check for the absence of
a substring by negating the in operator. (i.e., not in)

Chapter 14: Sequences Strings

Computer Scripting Techniques with Python © 2023 Pulp Free Press 421

0
0
0
0
1
1
1
0

2.6 Slicing

You will encounter many times the need to extract sections of a string either from the begin-
ning up to some index position or from a designated index position to another. You can do these
types of operations using sequence slicing. Example 14.5 shows how to perform various types of
slicing operations on a string.

14.5 string_slicing.py
1 """Demonstrate slicing operations on strings."""
2
3 def main():
4 s = 'As in books on geography, Sossius Senecio, the writers crowd the\n' \
5 'countries of which they know nothing into the furthest margins of their\n' \
6 'maps, and write upon them legends such as, "In this direction lie\n' \
7 'waterless deserts full of wild beasts;" or, "Unexplored morasses;" or,\n' \
8 '"Here it is as cold as Scythia;" or, "A frozen sea;" so I, in my\n' \
9 'writings on Parallel Lives, go through that period of time where history\n' \
10 'rests on the firm basis of facts, and may truly say, "All beyond this is\n' \
11 'portentous and fabulous, inhabited by poets and mythologers, and there\n' \
12 'is nothing true or certain."\n' \
13 '\tFrom "Life of Theseus", Plutarch\'s Lives, Vol. I\n'
14
15 # Print entire string
16 print(f'Print entire string:\n {s}\n')
17
18 # Print first 10 characters (index values 0 - 9)
19 print(f'Print first 10 characters:\n {s[:10]}\n')
20
21 # Print section of string from index 10 to 19
22 print(f'Print section of string from index 10 to 19:\n {s[10:20]}\n')
23
24 newline = '\n'

Figure 14-6: Results of Running Example 14.4

Strings Chapter 14: Sequences

422 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
1
1
0

25 # Print first line
26 print(f'Print first line:\n {s[:s.find(newline)]}')
27
28 if __name__ == '__main__':
29 main()
30

Referring to example 14.5 — On line 4, I’ve initialized the variable 's' with the opening
paragraph from the "Life of Theseus", Plutarch’s Lives, Volume I. The first thing I do on line 16 is
to print the entire string to the console for reference. Next, on line 19, I print the first 10 characters
of the string. The expression s[:10] yields the characters from index position 0 through 9. On
line 22, I print the characters from index position 10 through 19 using the expression s[10:20].
Finally, on line 26, I print all the characters in the first line by slicing from the beginning of the
string up to the first occurrence of the newline character '\n'. Note that on line 24 I have declared
a variable named newline and initialized it with '\n'. This is required because backslash charac-
ters are not allowed in formatted string expressions. The slicing expression s[:s.find(new-
line)] returns all characters from the beginning of the string up to the first occurrence of '\n'.
Figure 14-7 shows the results of running this program.

Quick Review

Strings are immutable sequences and support many of the same operations as their mutable
list counterparts. Common operations performed on strings include joining/building, accessing
individual characters, searching, and slicing. Always keep in mind that methods like
string.upper() and string.lower() return new strings and leave the original string
untouched.

Figure 14-7: Results of Running Example 14.5

Chapter 14: Sequences Lists

Computer Scripting Techniques with Python © 2023 Pulp Free Press 423

0
0
0
0
1
1
1
0

3 Lists

A list is a mutable sequence of elements. You can add elements to a list, modify list elements,
and delete elements from a list. Unlike a string, whose elements are all single-length Unicode
code points, a list’s elements can be a mix of different types, however, a list with mixed-type ele-
ments is an unusual use case. More often than not, you will create lists to hold elements of the
same type. (i.e., lists of strings, lists of integers, lists of some class-type objects, etc.) Enough jab-
bering! Let’s get into it!

3.1 Creating and Initializing Lists

Example 14.6 shows various ways to create and initialize lists.
14.6 create_lists.py

1 """Demonstrate various ways to create and initialize lists."""
2
3 def main():
4 # Create empty list
5 breakfast_club = []
6 # Then add elements
7 breakfast_club.append('Rick')
8 breakfast_club.append('Tri')
9 breakfast_club.append('Alex')
10 breakfast_club.append('Raffi')
11 print(f'Breakfast Club Has {len(breakfast_club)} \
12 Members: {breakfast_club}')
13
14 # Create and initialize with a list literal
15 it_566 = ['Jawaher', 'Bader', 'Matthew', 'Anthony',
16 'Davis', 'Lewis', 'Joseph']
17 print(f'IT-566 Class has {len(it_566)} Students: {it_566}')
18
19 print('*' * 20)
20
21 # Create another empty list
22 list_of_lists = []
23 # Then add the existing lists
24 list_of_lists.append(breakfast_club)
25 list_of_lists.append(it_566)
26 print(f'List of Lists: {list_of_lists}')
27
28 if __name__ == '__main__':
29 main()
30

Referring to example 14.6 — On line 5, I create an empty list named breakfast_club with
the help of a set of opening and closing brackets "[]". Armed with an empty list, you can add
items to the list with the append() method as shown on lines 7 through 10. On line 11, I print the
number of items in the list with the help of the built-in len() function followed by the list’s items.
Next, on line 15, I create a new list named it-566 and initialize it with a list literal. A list literal is
a set of comma-separated elements contained within a set of square brackets. On line 17, I print
the number of items in the list followed by the list’s items. Finally, on line 22, I create another
empty list named list_of_lists, append the previous two lists, and print the list. Figure 14-8
shows the results of running this program.

Lists Chapter 14: Sequences

424 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
1
1
0

Referring to figure 14-8 — Note how printing a list renders the list items on the console. The
items appear as a set of comma-separated elements within square brackets. The square brackets
indicate that what is printed is a list. Note also how the list_of_lists prints to the console. It
renders as two lists contained within a list. (i.e., [[] []])

3.2 List Comprehensions

Another way to create and initialize a list is via a list comprehension. It can take some effort to
wrap your head around list comprehensions, so let’s go straight to an example. Example 14.7
shows how one might create a list of Latin alphabet consonants with the help of a list comprehen-
sion.

14.7 list_comprehensions.py
1 """Demonstrates list comprehensions."""
2
3 def main():
4 # Create list of vowels
5 vowels = ['A', 'E', 'I', 'O', 'U']
6 # Create list of consonants
7 consonants = [chr(c) for c in range(65,91) if chr(c) not in vowels]
8 print(f'Consonants: {consonants}')
9
10 if __name__ == '__main__':
11 main()
12

Referring to example 14.7 — I start on line 5 by creating a list of capitalized vowels. On line
7, I create a list of consonants with the help of a list comprehension. A list comprehension is con-
tained within a set of square brackets. It begins with an expression followed by one or more for
and if clauses. The chr() built-in function converts an integer into a character and serves as the
expression. The range() function generates integers from 65 to 90. These correspond to the
ASCII characters 'A' - 'Z'. Thus, the list comprehension on line 7 can be read like so:

"Create a list of characters, chr(c), that contains values of c between 65 through 90 whose
character values are not in the list of vowels."

Figure 14-9 shows the results of running this program.

Figure 14-8: Results of Running Example 14.6

Figure 14-9: Results of Running Example 14.7

Chapter 14: Sequences Lists

Computer Scripting Techniques with Python © 2023 Pulp Free Press 425

0
0
0
0
1
1
1
0

You could create the same list of consonants without using a list comprehension as shown in
example 14.8.

14.8 consonants.py
1 """Create list of consonants using ordinary means."""
2
3 def main():
4 # Create list of vowels
5 vowels = ['A', 'E', 'I', 'O', 'U']
6 # Create empty list to hold consonants
7 consonants = []
8 # Step through ASCII values 65 through 90
9 # If c not a vowel add to list
10 for c in range(65, 91):
11 if chr(c) not in vowels:
12 consonants.append(chr(c))
13
14 print(f'Consonants: {consonants}')
15
16
17 if __name__ == '__main__':
18 main()
19

Referring to example 14.8 — As in the previous example, I start by creating a list of vowels.
Next, I create an empty list named consonants. The for statement beginning on line 10 steps
through the range of values 65 through 90. If the value chr(c) is not in the list of values, it is
added to the consonants list. Note the order of the for and if statements are the same here as they
are in the list comprehension of the previous example.

3.2.1 Thoughts On List Comprehensions

Personally, I don’t reach for list comprehensions on my first attempt at writing code. I will
write code and then review the results to see if it can be distilled and clarified with a list compre-
hension. Complex list comprehensions can be tough for mere mortals to decipher and tend to
obfuscate rather than clarify. This leads to the following Pro Tip:

Pro Tip: Avoid overly complex list comprehensions, especially if they obfuscate the meaning of your code
rather than clarify.

3.3 Processing Lists

Up till now in this section, I’ve only printed the entire list to the console. Sometimes this may
be what you want to do, but generally you will need to iterate over a list and perform some type of
processing on each element. The following example prints a list of student names and other infor-
mation in a tabular format using the PrettyTable package.

14.9 process_names.py
1 """Demonstrate list processing."""
2
3 from prettytable import PrettyTable
4
5 def main():
6 students = list()
7 students.append("Anthony Alston, Masters, IT")

Lists Chapter 14: Sequences

426 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
1
1
0

8 students.append("Phillip Behrns, Masters, IT")
9 students.append("Lkhagvasuren Dechinlkhundev, Masters, Cybersecurity")
10 students.append("Samantha King, PhD, Cybersecurity")
11 students.append("Claire Madison, Masters, Cybersecurity")
12
13 table = PrettyTable()
14 table.field_names = ["Student Name", "Degree", "Major"]
15 table.align = 'l'
16
17 for student in students:
18 info = student.split(',')
19 table.add_row([info[0], info[1], info[2]])
20
21 print(table)
22
23 if __name__ == '__main__':
24 main()
25

Referring to example 14.9 — There’s a lot going on in this short example. First, on line 3, I
import PrettyTable. For more information about how to install and use PrettyTable see the pack-
age page on PyPI: https://pypi.org/project/prettytable/ Next, on line 6, I create an empty list using
the list() constructor. I then add several students and their information to the list. Note that I’m
adding comma separated strings. On line 13, I create a table and populate the
table.field_names property with a list of strings representing each field name. I then set the
table alignment to left. The bulk of the processing occurs in the for statement starting on line 17.
I step through each student string in the students list and split the string into three separate
strings. The result of the split() method is a list of three strings using a comma as a field delim-
iter. I then add a row to the table and populate it with data from the info list. (i.e., info[0] yields
the student’s name, info[1] yields the degree, and info[2] yields the major) Figure 14-10
shows the results of running this program.

3.3.1 The enumerate Function

Earlier in the section on strings in example 14.3, I showed you how to iterate over a sequence
in a Pythonic and non-Pythonic way. The non-Pythonic way is considered non-Pythonic because
it employs the range() and len() functions to generate an index with which to access each

Figure 14-10: Results of Running Example 14.9

Chapter 14: Sequences Lists

Computer Scripting Techniques with Python © 2023 Pulp Free Press 427

0
0
0
0
1
1
1
0

sequence element. Using these functions to iterate over a sequence is considered non-Pythonic by
Python snobs mainly because, they claim, it shows a lack of understanding of Python sequence
iteration idioms. Usually, it’s programmers who come to Python from other languages like C,
C++, and Java, who are most likely to iterate over a sequence in Python using idiomatic expres-
sions supported by those languages. By idiomatic expressions, I’m talking about for loops as
shown in the following brief example written in the C programming language.

14.10 main.c
1 /* A Short C Program to Process an Array of Integers. */
2
3 #include <stdio.h>
4
5 int main(){
6
7 int total = 0;
8 int numbers[] = {1,2,3,4,5,6,7,8,9,10};
9
10 for(int i = 0; i < 10; i++){
11 total += numbers[i];
12 }
13
14 printf("Total = %d", total);
15
16 return 0;
17 }
18

Referring to example 14.10 — Even if you’ve never seen a C program, you should be able to
nuke out what’s happening in the code. All the action takes place within a function named
main(). On line 7, I declare an integer variable named total and assign to it the value 0. On the
following line, I declare and initialize an array of ten integers. The for statement that begins on
line 10 uses an indexer named i to step through each element of the array and add the value at the
ith position to the total.

Look closely at the way the for statement is written in the example above. This is what I
mean when I refer to an idiomatic looping statement in languages like C, C++, etc. If you are an
experienced programmer in a programming language with similar for statements, writing them
this way is a tough habit to break.

Conversely, iterating over a sequence the Pythonic way in Python is akin to using a foreach
statement in C#. If you’re not familiar with that language, don’t worry, it’s very similar to how the
Python for statement works. Sometimes, however, you want to iterate over a sequence and
extract both the value of each element and the indexer associated with each value. This is where
the built-in enumerate() function comes in handy as shown in the following example.

14.11 enumerating_lists.py
1 """Demonstrate the enumerate() function."""
2
3 from prettytable import PrettyTable
4
5 def main():
6 names = ['Sarah', 'Sapna', 'Laura', 'Anita', 'Diana', 'Katerina']
7 table = PrettyTable()
8 table.align = 'l'
9 table.field_names = ['Index', 'Name']
10
11 for index, value in enumerate(names):
12 table.add_row([index, value])

Lists Chapter 14: Sequences

428 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
1
1
0

13

14 print(table)

15

16 if __name__ == '__main__':

17 main()

18

Referring to example 14.11 — This example uses the PrettyTable package again to format the
output in a more human-readable manner. On line 6, I declare and initialize a list of names. The
for statement on line 11 uses the enumerate() function to extract both the index and value of
each list element. I then add each index and value to a new row in the table. Finally, on line 14, I
print the table to the console. Figure 14-11 shows the results of running this program.

Note that the hardest part about using the enumerate() function is remembering the order it
returns the index and the value. Just remember, "I before V she whispered to me!" (;-o)

3.4 More List Operations

Table 14-2 lists operations you can perform on a list (mutable sequence), including the
list.append() and list.count() methods you’re already seen in action.

Operation Result

list.append(item)
Add an item to the end of the list. Increases len(list) by
one.

list.extend(iterable)
Add all the items in iterable to the end of the list. Increases
len(list) by number of items in iterable.

list.insert(index, item) Insert item at given index position.

list.remove(item)

Remove the first element from the list with value equal to
item. Throws a ValueError exception if the item is not in
the list.

Table 14-2: List (Mutable Sequence) Operations

Figure 14-11: Results of Running Example 14.11

Chapter 14: Sequences Lists

Computer Scripting Techniques with Python © 2023 Pulp Free Press 429

0
0
0
0
1
1
1
0

I’ll leave most of these operations for you to explore on your own, but I will demonstrate the
sort() method and show you how the key parameter allows you to customize the sorting opera-
tion as shown in example 14.12.

14.12 sort_list.py
1 """Demonstrate list.sort() method."""
2
3 def main():
4 letters = ['z', 'W', 'Z', 'Q', 'a', 'A', 'm']
5 print(f'Original Order: {letters}')
6 letters.sort()
7 print(f'Default sort(): {letters}')
8 letters.sort(key=str.upper)
9 print(f'Specify sort key param: {letters}')
10
11 if __name__ == '__main__':
12 main()
13

Referring to example 14.12 — In this short example, I create a list of mixed-case letters in
higgledy-piggledy order. My intention is to sort the list in ascending order, however, if you look at
an ASCII chart, you’ll notice that the upper case letters come before the lower case letters. A call
to letters.sort() without the optional key parameter (i.e., a default sort) confirms this. On line
8, I assign the name of the str.upper method to the key parameter, which calls the str.upper()
method on each character in the list. Figure 14-12 shows the results of running this program.

list.pop() or list.pop(index)

list.pop() removes and returns the last element from the
list. list.pop(index) removes and returns the element from
given index. Throws IndexError if the list is empty or
index is invalid.

list.clear() Removes all list elements.

list.index(x[, i[, j]])
Returns the index of the first occurrence of x in
sequence, at or after index i and before index j.

list.count(item) Returns the number of times item appears in the list.

list.sort(*, key=none, reverse=False) Sort list elements in place. (See example below.)

list.reverse() Reverse list elements in place.

list.copy() Returns shallow copy of list.

Operation Result

Table 14-2: List (Mutable Sequence) Operations (Continued)

Figure 14-12: Results of Running Example 14.12

Lists Chapter 14: Sequences

430 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
1
1
0

3.5 Converting List To JSON

JavaScript Object Notation (JSON) is considered the de facto standard for IT systems data
interchange, and Python makes it easy to convert lists into JSON strings and back again. Example
14.13 offers a short example that shows you how to perform JSON encoding and decoding with
the help of the json package and the json.dumps() and json.loads() methods.

14.13 json_encoding_decoding.py
1 """Demonstrate how to perform JSON encoding and decoding on a list."""
2
3 import json
4
5 def main():
6 students = ['Davis', 'Badar', 'Matthew', 'Lewis', 'Joseph']
7 print(f'students list: {students}')
8 # Use json.dumps() to convert list to JSON string
9 students_json = json.dumps(students)
10 print(f'students_json: {students_json}')
11 # Use json.loads() to create Python object from JSON string
12 students_two = json.loads(students_json)
13 print(f'students_two list: {students_two}')
14
15
16 if __name__ == '__main__':
17 main()
18

Referring to example 14.13 — Starting from the top, on line 3, I import the json package,
which is part of the Python standard library. Next, on line 6, I create a list of student names and
print the list to the console. On line 9, I convert the list into a JSON string and print it to the con-
sole. Note the difference between how a Python list prints to the console vs. a JSON list. The
JSON list items are surrounded by double-quotes whereas Python list items are surrounded by
single-quotes. Finally, on line 10, I convert the JSON string back into a Python object, and print
the list to the console again as a check. Figure 14-13 shows the results of running this program.

You’ll learn more about JSON and how to use it to share data between applications as you
progress through the book.

Quick Review

A list is a mutable sequence of elements. You can add elements to a list, modify list elements,
and delete elements from a list. Unlike strings, lists can have elements of any data type including,
but by no means limited to, integers, floats, strings, other lists, dictionaries, and user-defined data
types.

Figure 14-13: Results of Running Example 14.13

Chapter 14: Sequences Ranges

Computer Scripting Techniques with Python © 2023 Pulp Free Press 431

0
0
0
0
1
1
1
0

You can create lists in many different ways including with square brackets "[]", the list()
constructor, and list comprehensions. Use list comprehensions sparingly as they can be challeng-
ing to decipher.

Lists can be processed using for statements. If you need to extract both the index and value
from a list during processing use the enumerate() function.

Use the json.dumps() method to convert a Python list into a JSON list string. Use the
json.loads() method to convert a JSON list string into a Python list.

4 Ranges

A range behaves like an immutable sequence of numbers. You’ve already seen ranges in
action but I would like to elaborate on exactly what a range is and how they can be used. When
you create a range using the range() function, you are actually calling the range type’s construc-
tor. Let’s take a look at a short example that highlights some of the more common uses of ranges.

14.14 range_common_uses.py
1 """Demonstrate common uses of ranges."""
2
3 def main():
4 # To loop n number of times
5 for i in range(10):
6 print(f'{i}, ', end='')
7
8 print()
9
10 # Specify start, stop, and step
11 for i in range(2, 100, 10):
12 print(f'{i}, ', end='')
13
14 print()
15
16 # Assign range to variable
17 range_one = range(10)
18 range_two = range(10, 21)
19 print(f'{range_one}')
20 print(f'{range_two}')
21
22 # Create list from range
23 num_list = list(range_one)
24 print(f'{num_list}')
25
26 # Extend list with range
27 num_list.extend(range_two)
28 print(f'{num_list}')
29
30 # Check for membership
31 print(f'5 in range_one: {5 in range_one}')
32 print(f'5 in range_two: {5 in range_two}')
33
34
35 if __name__ == '__main__':
36 main()
37

Tuples Chapter 14: Sequences

432 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
1
1
0

Referring to example 14.14 — On line 5, I use a range to generate ten integer values from 0 -
9 and print the value of i in the body of the for loop. This is perhaps the most frequent way you’ll
see a range employed. On line 11, I specify the start, stop, and step parameters to generate
every 10th number between 2 and 99. On lines 17 and 18, I create two ranges and assign them to
the corresponding variables range_one and range_two. Next, on line 23, I create a list named
num_list from range_one. On line 27, I extend num_list with range_two. Finally, on lines 31
and 32, I search for values in each range using the in operator. Figure 14-14 shows the results of
running this program.

Referring to figure 14-14 — Notice when I print the range variables, only their type and set-
tings print to the console, not the values they generate. Although a range can be treated like a
sequence, it does not contain all of its possible values, like a list does. A range object will generate
its specified values one-at-a-time, as, for example, when a range is used to supply values to a for
loop. Thus, a range is a generator with super powers. You’ll learn more about generators later in
the book.

Quick Review

A range behaves like an immutable sequence of numbers. It’s a cross between an immutable
sequence and a generator. A generator is function or object that returns values one-at-a-time.
When creating a range with the range() function, you are actually calling the constructor on a
range object. Ranges are used for a variety of purposes from generating index values in for loops
to populating lists with numeric values.

5 Tuples

A tuple is a immutable list. Tuples are created using parentheses "()" or by simply separating
tuple items with commas as shown in example 14.15.

14.15 tuples.py
1 """Demonstrate how to create and use tuples."""
2
3 def main():
4 # Create tuple with parentheses
5 person_1 = ('Steven', 'Hester')
6 # Create tuple with commas

Figure 14-14: Results of Running Example 14.14

Chapter 14: Sequences Tuples

Computer Scripting Techniques with Python © 2023 Pulp Free Press 433

0
0
0
0
1
1
1
0

7 person_2 = 'David', 'Miller'
8 # Access tuple elements via indexers
9 print(f'{person_1[0]} {person_1[1]}')
10 print(f'{person_2[0]} {person_2[1]}')
11
12 # Process tuple with for loop
13 for s in person_1:
14 print(f'{s} ', end='')
15
16
17 if __name__ == '__main__':
18 main()
19

Referring to example 14.15 — On line 5, I’m creating a tuple with two string elements using
parentheses. On line 7, I creating a tuple with two string elements using commas. Both methods of
creating tuples work fine, but I prefer to use parentheses. Once you have a tuple, you can use it
like a list, but since it’s immutable, you can’t add, modify, or delete its elements. Figure 14-15
shows the results of running this program.

That really covers the basics of tuples. You’ll learn more about how and when to use tuples as
you progress through the book. Just remember they are immutable. What’s the big deal about
immutability, anyway? Good question. I will answer it in the next chapter.

Quick Review

A tuple is an immutable list. Tuples can contain any type of data. You can create tuples with
parentheses or with comma separated items. Once you have a tuple, you can use it like a list, but
since it’s immutable, you cannot add, modify, or delete tuple items.

Summary

Sequences come in two flavors: mutable and immutable. A mutable sequence is one whose
elements can be added, modified, and removed. Conversely, the elements contained within an
immutable sequence cannot be modified. Understanding the differences between mutable and
immutable sequences unlocks the key to understanding the differences between lists and strings.

Python’s sequence types include lists, tuples, and ranges. Python also includes specialized
types for storing and processing text strings and binary data.

A sequence is an ordered set of elements that can be accessed individually via a positive or
negative integer index. The three most common types of sequences you will use in your programs
include strings, lists, and ranges.

Figure 14-15: Results of Running Example 14.15

Tuples Chapter 14: Sequences

434 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
1
1
0

Strings are immutable sequences and support many of the same operations as their mutable
list counterparts. Common operations performed on strings include joining/building, accessing
individual characters, searching, and slicing. Always keep in mind that methods like
string.upper() and string.lower() return new strings and leave the original string
untouched.

A list is a mutable sequence of elements. You can add elements to a list, modify list elements,
and delete elements from a list. Unlike strings, lists can have elements of any data type including,
but by no means limited to, integers, floats, strings, other lists, dictionaries, and user-defined data
types.

You can create lists in many different ways including with square brackets "[]", the list()
constructor, and list comprehensions. Use list comprehensions sparingly as they can be challeng-
ing to decipher.

Lists can be processed using for statements. If you need to extract both the index and value
from a list during processing use the enumerate() function.

Use the json.dumps() method to convert a Python list into a JSON list string. Use the
json.loads() method to convert a JSON list string into a Python list.

A range behaves like an immutable sequence of numbers. It’s a cross between an immutable
sequence and a generator. A generator is function or object that returns values one-at-a-time.
When creating a range with the range() function, you are actually calling the constructor on a
range object. Ranges are used for a variety of purposes from generating index values in for loops
to populating lists with numeric values.

A tuple is an immutable list. Tuples can contain any type of data. You can create tuples with
parentheses or with comma separated items. Once you have a tuple, you can use it like a list, but
since it’s immutable, you cannot add, modify, or delete tuple items.

Skill-Building Exercises

1. String Manipulation: Given a string, reverse it without using built-in reverse functions.

2. List Operations: Write a program that removes duplicates from a list while preserving the
original order of elements.

3. Tuple Manipulation: Create a tuple of tuples representing student information (name, age,
grade). Write a function to sort the students by grade in descending order.

4. Range Practice: Generate a list of even numbers between 1 and 100 using a range object and
list comprehension.

5. String Formatting: Write a program that takes a sentence as input and capitalizes the first let-
ter of each word.

6. List Sorting: Given a list of tuples containing (name, age), sort the list based on age in ascend-
ing order.

Chapter 14: Sequences Tuples

Computer Scripting Techniques with Python © 2023 Pulp Free Press 435

0
0
0
0
1
1
1
0

7. Tuple Unpacking: Create a tuple of coordinates (x, y). Write a function that takes this tuple as
input and returns the distance of the point from the origin (0, 0).

8. String Searching: Write a program that takes a string and a substring as input and counts the
number of occurrences of the substring within the string.

9. List Comprehension: Generate a list of squares of numbers from 1 to 10 using list comprehen-
sion.

10. Tuple Concatenation: Create two tuples of integers. Write a program to concatenate these
tuples and sort the resulting tuple in ascending order.

Suggested Projects

1. Sequence Manipulation Tool: Create a tool that allows users to perform various operations on
sequences like lists, tuples, and strings. Operations can include sorting, reversing, merging, and
searching within sequences.

2. Sequence Pattern Matcher: Develop a program that takes a sequence and a pattern as input
and identifies all occurrences of the pattern within the sequence. This could be applied to
strings, lists, or tuples.

3. Sequence Generator: Build a sequence generator program that generates different types of
sequences (e.g., Fibonacci sequence, prime numbers, arithmetic sequences) based on user input
parameters.

4. Sequence Analyzer: Create a program that analyzes sequences to determine properties such as
length, uniqueness of elements, presence of duplicates, and frequency distribution of elements.

5. Sequence Converter: Develop a tool that converts sequences between different types (e.g.,
converting a string to a list or a tuple) while preserving the order and integrity of elements.

6. Sequence Compression Utility: Build a program that compresses sequences by identifying
repeating patterns and replacing them with a shorter representation, thus reducing the overall
size of the sequence.

7. Sequence Comparator: Develop a program that compares two sequences and identifies simi-
larities, differences, and common elements between them. This could be useful for tasks like
plagiarism detection or version control.

8. Sequence Alignment Tool: Create a tool for aligning sequences (e.g., DNA or protein
sequences) by identifying regions of similarity and dissimilarity, helping in tasks like sequence
comparison and evolutionary analysis.

Tuples Chapter 14: Sequences

436 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
1
1
0

9. Sequence Visualization Tool: Build a program that visualizes sequences using graphs, histo-
grams, or other graphical representations to help users better understand the distribution and
patterns within the sequence.

10. Sequence Encryption/Decryption: Develop a program that encrypts and decrypts sequences
using cryptographic techniques, providing a secure way to transmit and store sensitive informa-
tion within sequences.10.

Self-Test Questions

1. What are the two primary types of Python sequences?

2. How do you declare an empty list in Python?

3. What are the fundamental characteristics of Python lists, and how do they support various oper-
ations like indexing and slicing?

4. What three sequence types are considered immutable?

5. How do tuples differ from lists in Python?

6. Discuss the role of indexing and slicing in accessing elements within Python sequences, high-
lighting any notable differences between various sequence types.

7. What are the advantages of using Python's built-in sequence functions like len(), min(), and
max() over manual implementations?

8. How do you iterate over sequences in Python using loops, comprehensions, and built-in func-
tions like enumerate()?

9. Explain the concept of sequence unpacking in Python, and provide examples demonstrating its
usage with tuples and lists. (Note: I did not specifically discuss this topic in this chapter, so you
may need to do some additional research online.)

10. Can you describe scenarios where Python's sequence types, such as lists, tuples, and strings,
are used interchangeably, and when it's beneficial to use one over the others?

References

The Python Data Model, https://docs.python.org/3/reference/datamodel.html

Sequence Types — list, tuple, and range, https://docs.python.org/3/library/std-

Chapter 14: Sequences Tuples

Computer Scripting Techniques with Python © 2023 Pulp Free Press 437

0
0
0
0
1
1
1
0

types.html#sequence-types-list-tuple-range

Emoji Chats, Unicode.org, https://www.unicode.org/emoji/charts/full-emoji-list.html

Unicode HowTo, Python.org, https://docs.python.org/3/howto/unicode.html

Notes

Tuples Chapter 14: Sequences

438 © 2023 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
1
1
0

	Ch-14: Sequences
	1.1 What Is A Sequence?
	1.2 Immutable Vs. Mutable Sequences
	1.3 Common Sequence Operations
	2 Strings
	2.1 What Is A String?
	2.2 Common Operations On Strings
	2.3 Concatenation
	2.4 Accessing Individual Characters
	2.5 Searching
	2.6 Slicing

	3 Lists
	3.1 Creating and Initializing Lists
	3.2 List Comprehensions
	3.2.1 Thoughts On List Comprehensions

	3.3 Processing Lists
	3.3.1 The enumerate Function

	3.4 More List Operations
	3.5 Converting List To JSON

	4 Ranges
	5 Tuples

