
Computer Scripting Techniques with Python © 2024 Pulp Free Press 459

0
0
0
1
0
0
0
0

00010000

Ch-16: File I/O

Learning Objectives
• State the purpose of a file
• Use the open() function to create a file object
• Use a context manager when conducting file I/O operations
• List and describe the text file modes
• List and describe the binary file modes
• List and describe the file object methods
• Write strings to a file with the write() method
• Explain the difference between the read() and readline() methods
• Demonstrate your ability to interact with text and binary files
• State the purpose of a file pointer
• Write JSON data to a file
• Read JSON data from a file
• Explain the purpose of UTF-8 encoding
• Conduct random file I/O operations

CHAPTER 16

File I/O

Chapter 16: File I/O

460 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
1
0
0
0
0

Introduction

You will often need to store data in a file on disk for later use, either to preserve application
state between runs or to store the results of processing during program execution. The types of
data you might want to preserve include plain text such as JSON, XML, and comma separated
values (CSV), binary data such as images in JPEG, PNG, or TIFF format, or serialized objects cre-
ated with the Python pickle module, to name a few.

Luckily, Python makes it easy to work with files. In this chapter, you’ll learn how to open a
file for read, write, append, and update operations. You’ll learn about absolute and relative file
paths. You’ll learn how to save JSON data to a file. You’ll also learn the difference between
binary files and text files along with their associated file modes.

An important question to ask yourself when saving data to a file is how you intend to share the
data. Plain text files that contain data in JSON, XML, or CSV format are easiest to share because
they can be read and processed by any programming language.

Note that in this chapter I focus solely on file I/O, but many of the concepts you learn here
apply equally well to other forms of I/O including memory streams and network socket streams.

1 Basic File Operations

The beautiful thing about Python is that it lets you to do a lot with just a little bit of code. Let’s
start by writing and reading data to and from a text file as shown in example 16.1.

16.1 basic_file_ops.py
1 """Demonstrate basic file operations."""
2
3
4 def main():
5 filename = 'data.txt'
6 input_text = None
7
8 try:
9 while True:
10 # Get user's input
11 input_text = input('Enter some text: ')
12
13 # Exit program if user enters 'quit'
14 if input_text == 'quit':
15 exit()
16
17 # Write user's input to a file
18 with open(filename, 'w') as f:
19 f.write(input_text)
20
21 input('Press any key to continue: ')
22
23 # read text from a file
24 with open(filename, 'r') as f:
25 print(f'You Entered: {f.read()}')
26
27 except (OSError, Exception) as e:
28 print(f'Problem writing file: {e}')

Chapter 16: File I/O

Computer Scripting Techniques with Python © 2024 Pulp Free Press 461

0
0
0
1
0
0
0
0

29
30
31 if __name__ == '__main__':
32 main()
33

Referring to example 16.1 — There’s a lot going on in this short program. Overall, the pro-
gram runs a continuous while loop that prompts the user for input. If the user enters 'quit' the
program exits, otherwise, the program opens a file named data.txt in write text mode and writes
the user’s input to the file. The program then asks the user to press any key to continue, opens the
data.txt file in read text mode, reads the file contents, and prints it to the console.

Let’s break down further the code that opens and writes to the file. First, however, note that all
the important code is enclosed within a try/except statement. This is necessary because a lot
can go wrong when conducting file I/O operations. Notice as well on line 27 that I’m handling
two types of exceptions: OSError and Exception. This is an example of how multiple exceptions
must be packaged as tuples.

Looking at lines 18 and 19, I’m using the context manager with keyword along with the built-
in function open() to open a file named data.txt for writing. The first argument to the open()
function is the name of the file to open; the second argument is the file mode. In this case, I want
to write to the file so I’m using the 'w' file mode. The 'w' file mode is destructive in that it will
overwrite an existing file with the same name. More on file modes later.

The 'as f' assigns an alias to the file object. The letter 'f' is idiomatic, meaning it has
become an accepted name for a file object alias. You are free to use any alias you want. On line
19, the call to f.read() reads the file’s contents in its entirety.

The purpose of the with context manager is to automatically manage the file resource. If you
didn’t use the context manager, you would need to explicitly close() the file when you finish the
read() operation or in case of an error. The context manager allows you to forget about micro
managing file resources and I’ll be using it in this chapter and throughout the book.

When lines 18 and 19 complete execution, the user’s input has been written to a file named
data.txt in the local or working directory. The working directory is the directory where this
example program executes. Lines 24 and 25 open the data.txt file for reading and display its
contents in the console. Figure 16-1 shows the results of running this program with various input.

Referring to figure 16-1 — Each loop through the program overwrites the data.txt file. The
last input string remains in the file. Example 16.2 shows the contents of the data.txt file after

Figure 16-1: Results of Running Example 16.1 with Various Inputs (Your Results May Vary)

Chapter 16: File I/O

462 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
1
0
0
0
0

the program exists. Your results will most certainly be different unless you enter the same text as
shown in figure 16-1.

16.2 data.txt

1 Now is the time for all good men to come to the aid of their country.

1.1 File Modes

The complete signature of the built-in open() function is shown in the following code snip-
pet:

open(file, mode='r', buffering=-1, encoding=None, errors=None,
newline=None, closefd=True, opener=None)

Of the eight parameters, you will most often use the first two: file and mode. You may need to
set the remaining parameters depending on the type of data and size of the file.

A file is opened in a particular mode given by the second argument to the open() function.
Python treats files as containing either text or binary data. The default file mode is 'r' for read
text ('r' is a synonym for 'rt'), which returns the content of the file as a string (str) in the
default platform encoding or the encoding given by the open() function’s encoding parameter.
To read a file as binary data you would use the file mode 'rb' for read binary. Table 16-1 lists the
various file modes and their meaning.

Referring to table 16-1 — As you can see, the default file mode is 'r' which stands for 'read
text'. Text mode 't' is inferred if binary mode 'b' is not specified. In other words, the file
mode 'w' stands for 'write text', file mode 'a' stands for 'append text', etc.

The file pointer is a property associated with a file object that indicates where the next read or
write will occur within the file. You’ll learn more about file pointers in the section Binary Data
and Random File I/O later in this chapter.

File Mode Meaning

'r' Open file for reading text. This is the default file mode. Returns file contents as a string
(str). File pointer is set to the beginning of the file.

'w' Open file for writing. Overwrites the file if it already exists. Creates new file if it does not
exist. Sets file pointer to beginning of file.

'x' Open file for exclusive creation. Fails if the file already exists. Creates file if it does not
exist. Sets file pointer to beginning of file.

'a' Open file for appending. Appends data to the end of the file if it already exists. File pointer
set to end of file.

'b' Open file in binary mode. Returns file contents as a binary object.

't' Open file in text mode. This is the default file mode. (i.e., 'r' is the same as 'rt')

'+' Open the file for updating. (i.e., reading and writing)

Table 16-1: File Modes and Their Meaning

Chapter 16: File I/O

Computer Scripting Techniques with Python © 2024 Pulp Free Press 463

0
0
0
1
0
0
0
0

File modes 'r', 'w', 'a', and 'x' can be used in combination with the binary 'b' and update
'+' modes as shown in table 16-2.

1.2 The File Object And Its Methods

Calling the open() function creates and returns a file object. A file object provides a set of
methods you can use to interact with a file on disk. The methods available on a file object depend
on whether you are dealing with text data, binary data, or random access file operations. For
example, opening a file with file mode 'r+' will create a file object that expects string input and
returns string output. Attempting to send binary data to a text-mode file object will raise a
TypeError exception. Table 16-3 lists the methods exposed by file objects and their meaning.

File Mode Meaning

'r+' Open file for both reading and writing text. File pointer is set to beginning of file.

'rb' Open the file for reading binary data. File pointer is set to beginning of file.

'rb+' Open file for reading and writing binary data. File pointer is set to beginning of file.

'w+' Open file for writing and reading text. Overwrites file if it exists. Creates a new file if it
does not exist.

'wb' Open file for writing binary data. Overwrites file if it exists. Creates a new file if it does
not.

'wb+' Open file for writing and reading binary data. Overwrites file if it exists. Creates a new file
if it does not.

'a+' Open file for appending and reading text. Creates a new file if it does not exist. Sets file
pointer to end of file.

'ab' Open file for appending binary data. Creates new file if it does not exist. Sets file pointer
to end of file.

'ab+' Opens file for appending and reading binary data. Creates new file if it does not exist. Sets
file pointer to end of file.

'xb' Open file for binary data writing if it does not already exist.

'xb+' Open file for binary data updating if it does not already exist.

Table 16-2: File Mode Combinations

Method Meaning

Frequently-Used Methods

f.read(size:int=-1)->str
f.read(size:int=-1)->bytes

Read number of characters or bytes from file up to size. If
size not provided, reads the contents of the file in its
entirety. Returns string if file opened in text mode and
bytes if opened in binary mode.

Table 16-3: File Object Methods with Type Hints

Chapter 16: File I/O

464 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
1
0
0
0
0

Referring to table 16-3 — I’ve grouped the file object methods into two groups representing
how often you are likely to use each method. I remind you once again that the methods available
on a file object and the data types they support depend on the mode used to open the file. For the
infrequently-used methods, opening a file with a context manager (i.e., using the with keyword)

f.readline(size:int=-1)->str Reads a single line of text from file. A newline character
'\n' remains on each line with the exception of the last
line of text. Thus, if readline() returns an empty string
it indicates the end of the file. If it returns only a newline
character it indicates a blank line. If size is provided,
reads up to that many bytes from the line.

f.readlines(hint:int=-1)->list[str] Read all the lines in a text file and return a list of strings. If
hint is provided, reads line until total size in bytes
reaches hint.

f.write(data:str)->int
f.write(data:bytes)->int
f.write(data:bytearray)->int

Write data to file and return number of characters or bytes
written.

f.writelines(lines:list[str])->int Writes a list of lines to the file. Does not add a newline
character between lines.

f.seek(offset:int, whence:int=0)->int Move file pointer to indicated offset from reference
point (whence). The whence argument is optional and
defaults to 0 indicating from the beginning of the file. Val-
ues for whence can be 0 (beginning of file), 1 (current
position), and 2 (end of file)

tell()->int Returns current file pointer position.

Infrequently-Used Methods

f.close()->None Close the file. Context manager (with) will close the file
automatically.

f.flush()->None Flush the file stream write buffer. Has no effect on read-
only files.

f.fileno()->int Returns a file’s low-level file descriptor number if it exists.

f.isatty()->bool Returns True if the underlying I/O stream is a terminal.

f.truncate(size:int=None) Resize the file to size in bytes. Can be used to reduce or
extend the file size. Extended file space is usually filled
with zero-valued bytes.

f.seekable()->bool Returns True if the file supports random access.

f.readable()->bool Returns True if the file is opened in a read or update
mode.

f.writable()->bool Returns True if the file is opened in write, append, or
update

Method Meaning

Table 16-3: File Object Methods with Type Hints (Continued)

Chapter 16: File I/O

Computer Scripting Techniques with Python © 2024 Pulp Free Press 465

0
0
0
1
0
0
0
0

eliminates the need to call the close() method. Since you are the programmer, if you open a file
in 'r' mode, you know it’s readable and not writable, so there’s generally no need to check for
these capabilities. I’ve never encountered the need to use the truncate() method, but that’s just
me.

1.3 File Paths

A critical skill you need to cultivate is how to navigate your computer’s file system. Referring
again to example 16.1 — I provide only the file name and mode to the open() method. The file-
name provides no explicit path information, so the file is opened in the working directory. The
working directory defaults to the directory in which the python command executes. It’s best to
avoid writing files to the working directory. Instead, you should write program data files to a ded-
icated directory. To read and write files from different directories you need to understand file
paths, referred to simply as paths, and the differences between relative and absolute paths.

1.3.1 Relative Paths

Relative paths are formulated from the starting point of a particular directory. Let’s say I am
working on a project and have my Python source files in a src directory and I want to store files
in a dedicated directory named data located in the project directory. Figure 16-2 shows how this
might look.

Referring to figure 16-2 — The name of the project directory is relative_paths. The full or
absolute path to the project directory is: ~/dev/cst_with_python_1st_ed/chapter16/rela-
tive_paths on macOS (Unix). The relative_paths directory contains two subdirectories: src
and data. The src directory contains one source file: main.py. Example 16.3 lists main.py.

16.3 main.py
1 """Demonstrate writing files to relative paths."""
2
3 def main():
4 # Bad practice -- Don’t do this!
5 file_name = 'data/data.txt'
6
7 try:
8 with open(file_name, 'w') as f:
9 f.write('Hello World!')
10
11 with open(file_name, 'r') as f:
12 print(f'{f.read()}')
13

Figure 16-2: Project Directory Layout with src and data Directories

Chapter 16: File I/O

466 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
1
0
0
0
0

14 except (OSError, Exception) as e:
15 print(f'Problem writing file: {e}')
16
17
18 if __name__ == '__main__':
19 main()
20

Referring to example 16.3 — On line 4 I’ve hard coded a relative file path which includes the
name of the data directory, a forward slash, which is the Unix path separator '/', and the file
name data.txt. This program may or may not work correctly depending on where I execute the
python command. If I am currently in the project directory, relative_paths, and run main.py
from the command line like so...python3 src/main.py...then the working directory is set to
relative_paths and the program successfully locates the data directory. Figure 16-3 shows the
results of running the program from the relative_paths directory.

Referring to figure 16-3 — When I execute main.py in the project directory, the program can
find the relative path to the data directory. However, another problem can potentially arise
because I hardcoded the path with the Unix path separator. What will happen if I run this program
on a Windows machine. Figure 16-4 shows the results.

Referring to figure 16-4 — It appears I got lucky. Since I developed example 16.3 on macOS,
a Unix certified operating system, the program works as expected with the forward slash file sep-
arator. When I test it on Windows in Git Bash it also works as expected, and it also works fine in

Figure 16-3: Results of Running Example 16.3

Figure 16-4: Running Example 16.3 in Windows Git Bash (top) and Command Prompt Terminals (above)

Chapter 16: File I/O

Computer Scripting Techniques with Python © 2024 Pulp Free Press 467

0
0
0
1
0
0
0
0

the Windows Command Prompt, which actually surprised me. It seems modern Windows operat-
ing systems know how to handle Unix file path separators. However, if I were a Windows devel-
oper and used a backslash vs. a forward slash in the hard coded file path, things would run fine in
Windows, but would break on macOS and Linux. This leads to the following Pro Tip:

Pro Tip: Do not hard code file separators in path strings.

Later, in the section Forming OS-Agnostic File Paths, I’ll show you how to use the os pack-
ages’s os.path.join() method to form file paths that work equally well across all three operat-
ing systems macOS, Linux, and Windows.

1.3.2 Absolute Paths

An absolute path is a fully-qualified path that starts at the root of the file system.

1.3.2.1 Linux and macOS

On macOS and Linux the file system root begins with a forward slash '/'. Hard drives, SSDs,
DVDs, thumb drives, etc, connected to macOS are located in the '/Volumes' directory. On Linux
they can be found in '/dev' or '/mnt'. Figure 16-5 shows the devices mounted under my '/
Volumes' directory.

Referring to figure 16-5 — Notice that I’m listing the drives in the '/Volumes' directory
from the '/Volumes/TwelveToedRAID/data/technicalbooks' directory. Beginning a path
with a forward slash on macOS and Linux indicates it is an absolute path starting from the root
directory. Alternatively, I could use a relative path to achieve the same results as shown in figure
16-6.

Referring to figure 16-6 — Notice here that I’m using '../../../' to indicate three directo-
ries up from the current directory.

Figure 16-5: Devices Mounted Under '/Volumes' Directory on My Mac Pro

Figure 16-6: Accessing '/Volumes' via a Relative Path

Chapter 16: File I/O

468 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
1
0
0
0
0

1.3.2.2 Windows

Windows file systems begin with a drive letter. Back in the day, yes, perhaps I dare say, before
you were born, drive letters 'A' and 'B' indicated floppy drives, while 'C' was assigned to the hard
drive, if you were lucky enough to have two hard drives, the second one was assigned the letter
'D'. I’m referring to the days before Windows but I am dating myself. I haven’t seen a floppy drive
in ions.

An absolute path on a Windows machine starts with a drive letter. Figure 16-7 shows some of
the drives and network folders attached to the Windows 10 VM I am currently using to write this
book.

Referring to figure 16-7 — The Local Disk (C:) is the 'C' drive. The network connected fold-
ers are assigned the letters 'X', 'Y', and 'Z'. If I insert a thumb drive, Windows will automati-
cally assign it a letter. To formulate an absolute file path on a Windows machine start with a
volume’s letter, as, for example, the path to the Program Files directory on the 'C' drive
"C:\Program Files".

1.3.3 Forming OS-Agnostic File Paths

Repeating once again, do not hard code paths in your Python code. The preferred way to for-
mulate paths is to use the os package’s os.path.join() method. You can also check to ensure a
directory exists before writing files to it as shown in example 16.4.

16.4 os_agnostic_paths.py
1 """Demonstrate the built-in os package."""
2
3 import os
4
5 def main():
6 working_dir = os.getcwd()

Figure 16-7: Windows Drives Have Assigned Letters

Chapter 16: File I/O

Computer Scripting Techniques with Python © 2024 Pulp Free Press 469

0
0
0
1
0
0
0
0

7 data_dir = 'data'
8 data_dir_path = os.path.join(working_dir, data_dir)
9 file_name = 'data.txt'
10
11 print(f'Working Directory: {working_dir}')
12 print(f'Data Directory: {data_dir_path}')
13
14 if not os.path.exists(data_dir_path):
15 os.makedirs(data_dir_path)
16
17 try:
18 with open(os.path.join(data_dir_path, file_name), 'w+') as f:
19 input_string = ''
20 while input_string != 'quit':
21 input_string = input('Enter a string or "quit" to exit: ')
22 if input_string != 'quit':
23 f.write(f'{input_string}\n')
24
25 f.seek(0)
26 print(f'{"*" * 20} File Contents {"*" * 20}')
27 print(f'{f.read()}')
28
29 except (OSError, Exception) as e:
30 print(f'Error! {e}')
31
32
33 if __name__ == '__main__':
34 main()
35

Referring to example 16.4 — This program properly formulates file paths on all three operat-
ing systems: Linux, macOS, and Windows. Starting on line 3, I import the os package. On line 6,
I create a variable named working_dir with the help of the os.getcwd() method, which returns
the absolute path to the current working directory. On line 8, I create the variable named
data_dir_path with the help of the os.path.join() method, which joins the working_dir and
data_dir variables to form the absolute path to the data directory. On lines 11 and 12 I print the
working_dir and data_dir_path values to the console. Next, in the if statement that begins on
line 14, I check to see if the data directory already exists with the help of the os.path.exists()
method and if not I create it with the help of the os.makedirs() method.

The meat of the program resides within the try/except block. I open the data.txt file for
writing and updating and while the user enters anything besides 'quit' the program writes the
user’s input to the file. When the user enters 'quit', the while loop exits, and on line 25 I reset
the file pointer to the beginning of the file with the help of the f.seek() method. I then read the
file and print its contents to the console.

Note on line 23 that I am adding a line feed '\n' character to the end of each line I write to the
file.

The use of f.seek(0) is required in this case because I am writing and reading the file within
one context manager session. Each file write operation, at least in this example, leaves the file
pointer set to the end of the file, which is were the next read or write operation will occur. If you
perform a read operation with the file pointer set to the end of the file you will find nothing there.
Remember, if you find yourself scratching your head wondering why you can see text in your file
when you open it in a text editor but a read operation returns nothing...you need to reset the file
pointer to the beginning of the file...and then read it.

Chapter 16: File I/O

470 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
1
0
0
0
0

Later, in the section on Random File I/O, you will learn how to move the file pointer to a spe-
cific location and read a specific number of bytes.

Figure 16-8 shows the results of running this program on macOS and Windows Git Bash.

Referring to figure 16-8 — Notice how the absolute paths are rendered in each operating sys-
tem.

1.3.3.1 Parting Thoughts

The os package packs a heavy punch and makes it easy to formulate and work with OS-
agnostic file paths. It lets you focus on the problem at hand and leave the operating system details
to Python. Also, another great piece of advice, especially when working with files and file paths,
if you plan to run your Python programs on different operating systems then you must test your
program accordingly which leads to following Pro Tip:

Pro Tip: Make no assumptions about Python cross-platform compatibility. Use the os package to formu-
late and work with OS-agnostic file paths and test the hell out of your Python programs on every oper-
ating system you intend to run them on.

Quick Review

Python makes it easy to work with files. You can do a lot with just a little bit of code. Use the
built-in open() function to open a file in a specified file mode: 'r', 'w', 'a', or 'x'. Python
treats files as containing either text 't' or binary 'b' data. Text mode is assumed. You must

Figure 16-8: Results of Running Example 16.4 on macOS (top) and Windows Git Bash (above)

Chapter 16: File I/O Binary Data and Random File I/O

Computer Scripting Techniques with Python © 2024 Pulp Free Press 471

0
0
0
1
0
0
0
0

explicitly set the binary file mode. Add the updating mode '+' to open a file for both reading and
writing.

The open() function returns a file object via which you interact with the file on disk. Use a
context manager to automatically manage the file resource.

A relative file path is formed starting from a directory other than the root volume. The Unix/
Linux file path separator is the forward slash '/'. The Windows file path separator is the backs-
lash '\'. A Unix/Linux absolute file path is formed starting from the root volume which is indi-
cated by a starting forward slash '/'. A Windows absolute file path begins with a drive letter.

Do not hard code file paths in Python programs. Use the os package to create and manipulate
OS-agnostic file paths.

2 Binary Data and Random File I/O

Binary data and random file I/O go together like Saint Tropez et Bain de Soleil. In this section
you will learn how binary data differs from string data, how to write binary data to a file, how to
read binary data from a file, and how to conduct random file I/O operations with a binary data file.
Let’s start with binary data.

2.1 Binary Data

Binary data refers to the raw bytes that underlie all digital data. (Refer to Chapter 4: Comput-
ers, Programs, and Algorithms, for a deeper discussion of bits, bytes, and words.) The most
important thing you need to remember is that all data on a computer is binary data.

2.1.1 Text Is Encoded Binary Data

Text is binary data that has been encoded to represent a particular character set, either ASCII
or Unicode. Python text is represented as Unicode strings, which must be converted into a
sequence of bytes via UTF-8 encoding before being written to disk or transmitted over a network.
(UTF-8 stands for Unicode Transformation Format — 8-Bit) When writing text to a file this
encoding is done automatically for you, but when you work directly with binary data, you, the
programmer, need to decide what a sequence of bytes represents and treat them accordingly.

2.2 Writing and Reading Binary Data

Let’s look as some code that works with binary data. Example 16.5 offers a short program that
creates, writes, and reads a binary data file.

16.5 binary_files.py
1 """Demonstrate binary file I/O."""
2
3 import os
4
5 def main():
6 # Create some binary data
7 byte_array = bytearray([0b00000000, 0b00000001, 0b00000010, 0b00000011])
8 hex_bytes = b'\x0f\x05\x15\xFF'
9
10 # Setup path variables

Binary Data and Random File I/O Chapter 16: File I/O

472 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
1
0
0
0
0

11 working_dir = os.getcwd()
12 data_dir = 'data'
13 data_dir_path = os.path.join(working_dir, data_dir)
14 data_file = 'binary.dat'
15
16 try:
17 if not os.path.exists(data_dir_path):
18 os.makedirs(data_dir_path)
19
20 with open(os.path.join(data_dir_path, data_file), 'wb') as f:
21 bytes_written = f.write(byte_array)
22 print(f'Bytes written: {bytes_written}')
23 bytes_written = f.write(hex_bytes)
24 print(f'Bytes written: {bytes_written}')
25 print(f'File Pointer Location: {f.tell()}')
26
27 input('Press any key to continue: ')
28
29 with open(os.path.join(data_dir_path, data_file), 'rb') as f:
30 # Opening a file for reading sets file pointer
31 # to beginning of file...
32 print(f'File contents: {f.read()}')
33 print(f'Seek to second byte: {f.seek(1)}')
34 print(f'Read second byte: {f.read(1)}')
35 print(f'Read next byte: {f.read(1)}')
36 print(f'File pointer location: {f.tell()}')
37
38 print('-' * 20)
39 # Reset file pointer to beginning of file
40 f.seek(0)
41 # Read file contents into byte array
42 file_bytes = bytearray(f.read())
43 # Iterate over each byte and print to console
44 for b in file_bytes:
45 print(f'{b:3} == {b:08b}')
46
47 except (OSError, Exception) as e:
48 print(f'Problem reading file: {e}')
49
50
51 if __name__ == '__main__':
52 main()
53

Referring to example 16.5 — On line 7, I create a variable named byte_array using the
bytearray() constructor with four binary literals. Note that a binary literal has a prefix of '0b'.
On line 8, I create another variable named hex_bytes initialized with a byte string literal consist-
ing of hexadecimal values. Within the binary string, each hexadecimal value is prefixed with
'\x'. On lines 11 through 14, I create a set of variables that configure the path to the current
working directory, the name of the data directory, and the name of the data file. Then, in the if
statement starting on line 17, I verify the existence of the data directory and create it if it’s not
there.

On lines 20 through 25, I open the file in 'wb' (write binary) mode and write both the
byte_array and hex_bytes data to the file and then print various statistics regarding the file
operations, including how many bytes were written and the location of the file pointer after the
last f.write() operation.

Chapter 16: File I/O Binary Data and Random File I/O

Computer Scripting Techniques with Python © 2024 Pulp Free Press 473

0
0
0
1
0
0
0
0

On line 27, I prompt the user to press any key to continue and then open the file in 'rb' (read
bytes) mode and on line 32 print the entire contents of the file to the console. After the first call to
f.read(), the file pointer is at the end of the file. A subsequent call to f.read() at that location
would return nothing, so, on line 33, I make a call to f.seek(1) to position the file pointer at the
second byte within the file and then call f.read(1) to read one byte. This advances the file
pointer by one byte at which point I read one more byte with f.read(1). Then, on line 36, I call
the f.tell() method to report the current position of the file pointer.

On line 38, I print the hyphen character '-' 20 times to create a section divider then reset the
file pointer to the beginning of the file with a call to f.seek(0), read the entire file with
f.read(), and pass the results into the bytearray() constructor. I then iterate over each byte and
print its decimal value followed by its binary representation. Figure 16-1 shows the results of run-
ning this program.

Referring to figure 16-9 — A call to f.seek() returns the file pointer’s new position with in
the file. (i.e., f.seek(1) returns 1) Also, just like an array, a file’s first addressable byte starts at
location zero.

2.3 More About Seeking

Table 16-4 gives several examples of seek() method usage.

Seek Call Meaning

f.seek(0) Seek to the beginning of file. (i.e., Seek zero bytes from the beginning of the file.)
Second argument defaults to zero.

Table 16-4: Example of Calling File Seek() Method

Figure 16-9: Results of Running Example 16.5

Binary Data and Random File I/O Chapter 16: File I/O

474 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
1
0
0
0
0

Referring to table 16-4 — A call to f.seek() moves the file pointer within the file relative
from one of three positions: the beginning of the file, the current position, or the end of the file.
These relative positions are indicated by the second argument to the seek() method which
includes 0 (from beginning of file), 1 (from current position), or 2 (from end of file). Note that
anytime you attempt to move the file pointer within a file it needs to have enough room to support
the move. For example, seeking backwards from the beginning of the file will raise an exception,
as will attempting to seek past the end of the file.

2.4 Binary Strings vs. Text

When you write binary to a file, the write() method returns the number of bytes written,
whereas when writing text, the write() method returns the number of characters written. This
may catch you off guard if you are expecting a 1-to-1 correspondence between writing a binary
string and a regular string. In most cases, they will be the same, but if the regular string contains
extended Unicode characters that cannot be represented by the Basic Latin character set, then the
number of bytes written will be more than the number of characters written.

As you recall from the previous section, Python strings are Unicode. Most English speakers
who have there computers configured to use English use the Basic Latin Character code set,
which includes the ASCII characters in the first eight bits. When writing Basic Latin Unicode
characters to disk or transmitting over the network, the characters are usually encoded into UTF-
8, which drops the eight most-significant bits. These bits are all zeros anyway, so there’s no loss
of data, and it takes up less space on the disk.

If you write text in Latin languages that include character accent marks like the French 'é',
then both Unicode bytes will be written for that special character. Example 16.6 provides a short
program that highlights the differences between writing text as text vs. text as binary.

16.6 binary_vs_text.py
1 """Demonstrate the difference between byte strings and text."""
2
3 import os
4
5 def main():
6 byte_string = b'Coucou! Voudrais tu rejoindre moi au caf\xc3\xa9?'
7 text_string = 'Coucou! Voudrais tu rejoindre moi au café?'
8
9 working_dir = os.getcwd()
10 data_dir = 'data'
11 data_dir_path = os.path.join(working_dir, data_dir)

f.seek(-2, 1) Seek two bytes back from current file pointer location. Will raise an exception if there
is not enough room to move backwards two bytes.

f.seek(8) Seek eight bytes from beginning of file. Will raise an exception if there is not enough
room in the file.

f.seek(-10, 2) Seek backwards ten bytes from end of file. Will raise an exception if there is not
enough space in the file.

f.seek(0, 2) Seek to end of file.

Seek Call Meaning

Table 16-4: Example of Calling File Seek() Method

Chapter 16: File I/O Binary Data and Random File I/O

Computer Scripting Techniques with Python © 2024 Pulp Free Press 475

0
0
0
1
0
0
0
0

12 binary_filename = 'binary_file.dat'
13 text_filename = 'text_file.txt'
14
15 try:
16 if not os.path.exists(data_dir_path):
17 os.makedirs(data_dir_path)
18
19 # Write binary data
20 # Binary mode takes no encoding argument
21 binary_file_path = os.path.join(data_dir_path, binary_filename)
22 with open(binary_file_path, 'wb') as f:
23 print(f'Binary File Bytes Written: {f.write(byte_string)}')
24
25 # Print file size to console
26 print(f'Binary File Size: {os.path.getsize(binary_file_path)}')
27
28 # Get text encoding to use with text mode
29 encoding = input('Text Encoding (utf-8 or utf-16): ')
30 if encoding not in ['utf-8', 'utf-16']:
31 encoding = 'utf-8'
32
33 # Write text data
34 text_file_path = os.path.join(data_dir_path, text_filename)
35 with open(text_file_path, 'w', encoding=encoding) as f:
36 print(f'Text File Characters Written: {f.write(text_string)}')
37
38 # Print text file size to console
39 print(f'Text File Size: {os.path.getsize(text_file_path)}')
40
41 print('*' * 50)
42
43 # Read binary file as text
44 with open(binary_file_path, 'r') as f:
45 print(f'Binary File as Text: {f.read()}')
46
47 # Read binary file as bytes
48 with open(binary_file_path, 'rb') as f:
49 print(f'Binary File as Bytes: {f.read()}')
50
51 # Read text file as text
52 with open(text_file_path, 'r', encoding=encoding) as f:
53 print(f'Text File as Text: {f.read()}')
54
55 # Read text file as bytes
56 with open(text_file_path, 'rb') as f:
57 print(f'Text File as Bytes: {f.read()}')
58
59
60 except (OSError, Exception) as e:
61 print(f'Problem writing or reading files: {e}')
62
63
64 if __name__ == '__main__':
65 main()
66

Referring to example 16.6 — On lines 6 and 7, I define a binary string and text string. Each
string conveys the same message in French which translates to "Hey! Would you like to join me at
the café?" (It’s the accented 'é' I am after for this example!) Note that on line 6 that a byte string

Binary Data and Random File I/O Chapter 16: File I/O

476 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
1
0
0
0
0

can only contain byte characters, which include ASCII, so the 'é' must be expressed as a series
of hex values. Next, the byte string is written to the binary file in binary mode. The user is then
prompted to enter an encoding to use for writing the text file and can choose between UTF-8 or
UTF-16. The text string is then written to the text file using the specified encoding. Finally, both
files are opened and read in both binary and text modes and the results printed to the console as
shown in figure 16-10.

Referring to figure 16-10 — Note that the number of characters written to the text file are less
than the size of the text file. This is because the Unicode 'é' requires two bytes as opposed to the
ASCII characters, which only require one byte.

2.5 Reading Image Metadata

You can really have a lot of fun poking around files in binary mode. In this section, I want to
give you a breathless introduction on how to read metadata from JPEG files. Now, there are 3rd
party libraries that can read the metadata for you, but if you really want to know more about
image file structure, nothing beats studying the specification and poking around the image file in
binary mode. That was my motivation for working on this example — I wanted to know more
about image files. But more importantly, the example in this section demonstrates how to conduct
random binary file I/O to solve a real-world problem.

2.5.1 Background

JPEG images contain a mixture of image data and metadata. The metadata is referred to as
EXIF (Exchangeable Image File Format) and is structured according to the Camera and Imaging
Products Association standard CIPA-DC-008-2012 [https://www.cipa.jp/std/documents/e/DC-
008-2012_E.pdf] After studying the specification and working on the code for this example, it
became quite clear why my camera EXIF data gets clobbered by Adobe Photoshop.

2.5.2 Basic JPEG File Structure

In a nutshell, a JPEG file begins with a two-byte code that signals the Start-of-Image (SOI)
'FFD8' and ends with a two-byte code that signals the End-of-Image (EOI) 'FFD9'. The JPEG
image may or may not contain EXIF data. If it does, it will be located in application segment

Figure 16-10: Results of Running Example 16.6

Chapter 16: File I/O Binary Data and Random File I/O

Computer Scripting Techniques with Python © 2024 Pulp Free Press 477

0
0
0
1
0
0
0
0

'APP0' identified by the two-byte code 'FFE1'. The data is written in a particular byte order indi-
cated by either the two-byte code 'II' (INTEL) or 'MM' (MOTOROLA). If the byte order is
INTEL then data is stored in Little Endian order meaning the least significant two bytes come
before the most significant two-bytes. These bytes must be swapped to produce the correct value.

Once the byte-order is established, there’s an entry that indicates how many EXIF tags are
present. Each EXIF tag record consists of twelve bytes structured as shown in table 16-5.

Referring to table 16-5 — Tags convey various types of data about the image, as you will see
here shortly.

2.5.3 Example Code

OK, the example for this section consists of two source files, constants.py and main.py. Exam-
ple 16.7 gives the listing for constants.py.

16.7 constants.py
1 """JPEG and EXIF Tag and Marker definitions.
2
3 NOTE: This is not a complete list by any means.
4 """
5
6 import types
7
8 # JPEG Markers and Segments
9 jpeg_markers = types.SimpleNamespace()
10 jpeg_markers.SOI = b'\xff\xd8'
11 jpeg_markers.EOI = b'\xff\xd9'
12 jpeg_markers.APP1 = b'\xff\xe1'
13 jpeg_markers.COMMENT = b'\xff\xfe'
14 jpeg_markers.EXIF = b'Exif'
15 jpeg_markers.INTEL = b'II*\x00'
16 jpeg_markers.MOTOROLA = b'MM\x00*'
17
18 # Tag Codes -- String version of 2-byte hex values
19 # Very small subset of EXIF tags
20 # Object properties can be used in match cases
21 tag_codes = types.SimpleNamespace()
22 tag_codes.image_width = '0100'
23 tag_codes.image_length = '0101'
24 tag_codes.bits_per_sample = '0102'
25 tag_codes.photometric_interpretation = '0106'
26 tag_codes.make = '010f'
27 tag_codes.model = '0110'
28 tag_codes.orientation = '0112'

Tag Record Field Bytes

Tag 2

Tag Type 2

Data Length 4

Data/Offset 4

Table 16-5: EXIF Tag Record Structure

Binary Data and Random File I/O Chapter 16: File I/O

478 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
1
0
0
0
0

29 tag_codes.samples_per_pixel = '0115'
30 tag_codes.x_resolution = '011a'
31 tag_codes.y_resolution = '011b'
32 tag_codes.resolution_unit = '0128'
33 tag_codes.software = '0131'
34 tag_codes.datetime = '0132'
35 tag_codes.artist = '013b'
36 tag_codes.host_computer = '013c'
37 tag_codes.ycbcrpositioning = '0213'
38 tag_codes.copyright = '8298'
39 tag_codes.exif_offset = '8769'
40 tag_codes.gps_info = '8825'
41 tag_codes.unknown = '0000'
42
43 # Tag Values
44 tags = {}
45 tags[tag_codes.image_width] = 'Image Width'
46 tags[tag_codes.image_length] = 'Image Length'
47 tags[tag_codes.bits_per_sample] = 'Bits Per Sample'
48 tags[tag_codes.photometric_interpretation] = 'Photometric Interpretation'
49 tags[tag_codes.make] = 'Make'
50 tags[tag_codes.model] = 'Model'
51 tags[tag_codes.orientation] = 'Orientation'
52 tags[tag_codes.samples_per_pixel] = 'Samples Per Pixel'
53 tags[tag_codes.x_resolution] = 'X-Resolution'
54 tags[tag_codes.y_resolution] = 'Y-Resolution'
55 tags[tag_codes.resolution_unit] = 'Resolution Unit'
56 tags[tag_codes.software] = 'Software'
57 tags[tag_codes.datetime] = 'DateTime'
58 tags[tag_codes.artist] = 'Artist'
59 tags[tag_codes.host_computer] = 'Host Computer'
60 tags[tag_codes.ycbcrpositioning] = 'YCbCrPositioning'
61 tags[tag_codes.copyright] = 'Copyright'
62 tags[tag_codes.exif_offset] = 'EXIF Offset'
63 tags[tag_codes.gps_info] = 'GPS Info'
64 tags[tag_codes.unknown] = 'Unknown'
65
66 # Tag Types
67 tag_types = {}
68 tag_types[1] = ('Unsigned Byte')
69 tag_types[2] = ('ASCII String')
70 tag_types[3] = ('Unsigned Short')
71 tag_types[4] = ('Unsigned Long')
72 tag_types[5] = ('Unsigned Rational')
73 tag_types[6] = ('Signed Byte')
74 tag_types[7] = ('Undefined')
75 tag_types[8] = ('Signed Short')
76 tag_types[9] = ('Signed Long')
77 tag_types[10] = ('Signed Rational')
78 tag_types[11] = ('Single')
79 tag_types[12] = ('Double')
80 tag_types[129] = ('UTF-8')
81
82 # Orientation Values
83 orientation = {}
84 orientation[1] = 'Horizontal (Normal)'
85 orientation[2] = 'Horizontal Mirrored'
86 orientation[3] = 'Rotated 180 Degrees'
87 orientation[4] = 'Vertical Mirrored'

Chapter 16: File I/O Binary Data and Random File I/O

Computer Scripting Techniques with Python © 2024 Pulp Free Press 479

0
0
0
1
0
0
0
0

88 orientation[5] = 'Horizontal Mirrored then Rotated 190 Degrees CCW'
89 orientation[6] = 'Rotated 90 Degrees CW'
90 orientation[7] = 'Horizontal Mirrored then Rotated 90 Degrees CW'
91 orientation[8] = 'Rotated 90 Degrees CCW'
92
93 # Resolution Unit Values
94 resolution_unit = {}
95 resolution_unit[1] = 'Not Absolute'
96 resolution_unit[2] = 'Pixels/Inch'
97 resolution_unit[3] = 'Pixels/Centimeter'
98

Referring to example 16.7 — As the doc comment indicates, this is by no means a complete
listing. It represents the tags and tag types I encountered while developing this example. Note that
I am importing the types package and using the types.SimpleNamespace() on lines 9 and 21 to
create namespaces to hold the jpeg_markers and tag_codes objects. I needed to do this so I
could use these values in match/case statements. Example 16-8 gives the listing for main.py.

16.8 main.py
1 """Demonstrate reading binary image EXIF data."""
2
3 import os
4 from constants import jpeg_markers
5 from constants import tag_codes
6 from constants import tag_types
7 from constants import tags
8 from constants import orientation
9 from constants import resolution_unit
10
11
12 def main():
13 try:
14 # Setup file paths
15 working_dir = os.getcwd()
16 image_dir = 'images'
17 image_dir_path = os.path.join(working_dir, image_dir)
18
19 # Create image directory if it does not exist
20 if not os.path.exists(image_dir_path):
21 os.makedirs(image_dir_path)
22
23 # Get JPEG image filename from user
24 filename = input('JPEG Image Filename: ')
25
26 # Open JPEG file in read binary mode
27 with open(os.path.join(image_dir_path, filename), 'rb') as f:
28
29 # Read entire file
30 content = f.read()
31
32 # Print first 512 bytes and print hex
33 for s in content[:512]:
34 print(f'{s:02x} ', end='')
35 print()
36
37 # Read forst 512 bytes and print chars
38 for s in content[:512]:
39 print(f'{chr(s)} ', end='')
40 print()

Binary Data and Random File I/O Chapter 16: File I/O

480 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
1
0
0
0
0

41
42 # Reset file pointer to beginning of file
43 f.seek(0)
44
45 # Verify it's a JPEG file
46 print(f'Verifying JPEG File...')
47 if is_jpeg_file(content[:2], content[-2:]):
48 print(f'{filename} is a JPEG file. Extracting EXIF data...')
49 else:
50 print(f'{filename} is not a JPEG file. Exiting...')
51 return
52
53
54 # Find Segment Offsets
55 print(f'{"-" * 10} Segment Offsets {"-" * 10}')
56
57 app1_segment_offset = None
58 try:
59 app1_segment_offset = content.index(jpeg_markers.APP1)
60 print(f'APP1 Segment offset: {app1_segment_offset}')
61 except Exception:
62 print(f'APP1 segment not found.')
63
64 exif_segment_offset = None
65 try:
66 exif_segment_offset = content.index(jpeg_markers.EXIF)
67 print(f'Exif Segment offset: {exif_segment_offset}')
68 except Exception:
69 print('Exif segment not found.')
70
71 comment_segment_offset = None
72 try:
73 comment_segment_offset = content.index(jpeg_markers.COMMENT)
74 print(f'Comment Segment offset: {comment_segment_offset}')
75 except Exception:
76 print('Comment segment not found.')
77
78 # Exit if no EXIT segment
79 if not exif_segment_offset:
80 print(f'{filename} does not contain an EXIF segment. ')
81 print('Exiting program.')
82 return
83
84 # Determine Endian
85 endian_offset = None
86 intel = False
87 try:
88 endian_offset = f.seek(exif_segment_offset + 6)
89 endian_marker = f.read(4)
90 if endian_marker == jpeg_markers.INTEL:
91 intel = True
92 print(f'Endian Marker: {endian_marker} : Endian is INTEL')
93 else:
94 print(f'Endian Marker: {endian_marker} : Endian is MOTOROLA')
95
96 except Exception:
97 print('Endian offset not found.')
98
99 # Print the endian marker

Chapter 16: File I/O Binary Data and Random File I/O

Computer Scripting Techniques with Python © 2024 Pulp Free Press 481

0
0
0
1
0
0
0
0

100 f.seek(endian_offset)
101 print(f'Endian Offset: {endian_offset} Read 4 : {f.read(4)}')
102 f.seek(endian_offset + 8)
103 exif_entries_raw_bytes = bytearray(f.read(2))
104
105 # How many EXIF records are there?
106 print(f'Exif Entries Raw Bytes: {bytes(exif_entries_raw_bytes)}')
107 f.seek(-2, 1)
108 exif_entries = int(swap_bytes(f.read(2)))
109 print(f'Exif Entries: {exif_entries}')
110
111 print('*' * 130)
112 # Print column headers
113 print(f'{"No.":<8}{"Raw Bytes":<10}{"Tag Hex":<10}\
114 {"Tag Name":30}{"Tag Type":<20} {"Length":<8}{"Data/Offset":<15}{"Data":<50}')
115 print('-' * 130)
116
117 # Read Tag Records
118 # Every 12 bytes from just past exif_entries bytes.
119 #
120 # ----Tag Record Layout----
121 # Tag: 2 Bytes
122 # Tag Type: 2 Bytes
123 # Data Length: 4 Bytes
124 # Data/Offset: 4 Bytes
125 ###########################
126
127 for i in range(exif_entries):
128 # Read tag bytes
129 tag = bytearray(f.read(2))
130
131 # Convert to hex string
132 tag_hex = 0
133 if intel:
134 tag_hex = f'{tag[1]:02x}{tag[0]:02x}'
135
136 else:
137 tag_hex = f'{tag[0]:02x}{tag[1]:02x}'
138
139 # Read Tag Type
140 tag_type = int(swap_bytes(f.read(2)))
141 # Read Data Length
142 data_length = \
143 int(swap_bytes(f.read(2)) + swap_bytes(f.read(2)))
144 # Read data or offset
145 data_or_offset = \
146 int(swap_bytes(f.read(2)) + swap_bytes(f.read(2)))
147
148 data = 'None'
149 if data_length > 4:
150 last_position = f.tell()
151 f.seek(endian_offset + data_or_offset)
152 data = f.read(data_length)
153 f.seek(last_position)
154 elif data_length == 1:
155 match tag_hex:
156 case tag_codes.orientation:
157 data = orientation[data_or_offset]
158 case tag_codes.resolution_unit:

Binary Data and Random File I/O Chapter 16: File I/O

482 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
1
0
0
0
0

159 data = resolution_unit[data_or_offset]
160 case _: pass
161
162 # Print EXIF data
163 print(f'{i: <8d}{f"{tag[0]:02x}{tag[1]:02x}":10}\
164 {tag_hex: <10}{tags.get(tag_hex):30}{tag_types.get(tag_type):<20}\
165 {data_length:<8d}{data_or_offset:<15}{data}')
166
167
168
169 except (OSError, Exception) as e:
170 print(f'Problem reading image file: {e}')
171
172
173 # Utility Methods
174 def is_jpeg_file(first_two_file_bytes:bytes,
175 last_two_file_bytes:bytes)->bool:
176 """Verify JPEG SOI and EOI."""
177 if __debug__:
178 print(f'SOI: {first_two_file_bytes} : \
179 EOI: {last_two_file_bytes}')
180 return (first_two_file_bytes == jpeg_markers.SOI) \
181 and (last_two_file_bytes == jpeg_markers.EOI)
182
183
184 def swap_bytes(b:bytes)-> bytes:
185 """Swap little endian bytes."""
186 return b[1] + b[0]
187
188
189 if __name__ == '__main__':
190 main()
191

Referring to example 16.8 — It’s probably a lot easier to load this file in Visual Studio Code
and follow along that way rather than flipping pages back and forth. The first thing this program
does is load a file, read its entire contents, and prints the first 512 bytes to the console in two for-
mats: hexadecimal and ASCII. Next, I verify the file is a JPEG file by checking the SOI and EOI
bytes. If it’s not a JPEG file, the program exits. Next, on lines 57 through 76, I look for various
JPEG segment markers and if they are present, I get their offsets. Note that this is the offset from
the beginning of the file. If the EXIF segment is not present the program exits.

The next several lines of code determine the byte order marker (BOM) or endianness of the
file, i.e, II (Intel or little endian) or MM (Motorola or big endian). From this point forward, the
BOM determines how the EXIF data is processed. In the program output I show the raw byte
order so you can see the difference between big endian vs. little endian byte order.

Next, eight bytes past the offset to the BOM resides two bytes that indicate the number of
EXIF records. From this point forward, every twelve bytes contains an EXIF record in the format
given in table 16-5. The for loop beginning on line 127 iterates over each EXIF record by reading
each set of field bytes and processing them accordingly. Note that for the sake of the example, I
am performing some extra byte processing so you can see how they are accessed and transformed.

Tag processing requires first reading the first two EXIF record bytes and swapping them if the
file BOM is II (Intel) to get the tag value. I then look up the tag name and the tag type. Note that
with the exception of the tag bytes, all data bytes are in little endian and must be swapped to
obtain the correct values.

Chapter 16: File I/O Binary Data and Random File I/O

Computer Scripting Techniques with Python © 2024 Pulp Free Press 483

0
0
0
1
0
0
0
0

OK, now we need an image to check. I’ll use Cat.jpg shown in figure 16-11.

Referring to figure 16-11 — I took this image of our good friend Alice Findler’s cat on my
iPad. Running the program on this image gives the results shown in figure 16-12.

Referring to figure 16-12 — The first 512 bytes are printed in hexadecimal then in ASCII. The
ASCII version allows you to easily pick out the metadata. Note the letters JFIF which stand for
JPEG File Interchange Format. In the hex output you can see the first two bytes are 'ffd8' which
is the JPEG SOI marker.

The next section of output shows the offset values to various JPEG segments, if they are pres-
ent, and the endian marker, which in this case is MM. (Note the full marker is 'MM\x00*') The
number of EXIF entries is determined, which in this case is 11, and then each marker is processed
and the results printed in table form to the console.

Note that I am not currently processing all the EXIF data, so some of the entries in the Data
column will show None. Look at the Length column entries. Any length over 4 means that the

Figure 16-11: A Good Candidate Image — Cat.jpg

Binary Data and Random File I/O Chapter 16: File I/O

484 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
1
0
0
0
0

Data/Offset column entries are offsets. These are mostly ASCII type tags as you can see from the
table. Referring again to example 16.8 — the if statement starting on line 149 checks the value of
the data_length field and if it’s greater that 4 it must perform a jump to the offset location indi-
cated by the data_or_offset field and read the number of characters indicated by the
data_length field. Note that before the jump, the last_position is preserved with a call to
f.tell() and restored after the jump with a call to f.seek(last_position).

2.5.4 Parting Thoughts

I will remind you once again, this example is incomplete, but does provide valuable insight
into how complex binary data is processed. Note that image processing is challenging because
different vendors often write metadata to image files in proprietary formats.

Figure 16-12: Results of Running Example 16.8 on Cat.jpg

Chapter 16: File I/O Serializing Objects To File With Pickle

Computer Scripting Techniques with Python © 2024 Pulp Free Press 485

0
0
0
1
0
0
0
0

Quick Review

Binary data underlies all data on a computer system. To write binary data to a file, open the
file in write binary 'wb' mode. To read binary data from a file, open the file in read binary 'rb'
mode. You cannot read or write text (ordinary strings) to a file opened for reading or writing
binary data and vice versa. A file opened in a binary mode cannot take an encoding argument.

Binary files support random file I/O. Use the seek() method to move the file pointer to a
desired location. Use the read() method to read bytes, and use the tell() method to obtain the
file pointer’s current position.

3 Serializing Objects To File With Pickle

Pickle is a Python library package that lets you serialize objects to a file. Serialization is the
process of converting objects in memory to a format that can be saved to a file or transmitted over
the network. An object serialized with pickle can be deserialized with pickle. Deserialization is
the process of reconstituting a serialized object back into an object in memory.

In this section, I will show you how to serialize a dictionary with pickle and save it to a file.
I will also show you how to use Python’s hmac and hashlib packages to generate a message
digest from the serialized object which can be used to verify the integrity of the of the deserialized
data. Example 16.9 gives a short example of how to pickle a dictionary.

16.9 pickle_demo.py
1 """Demonstrate object serialization to file with Pickle package."""
2
3 import pickle
4 import hmac
5 import hashlib
6 import os
7
8 def main():
9 try:
10 # Setup path variables
11 working_dir = os.getcwd()
12 data_dir = 'data'
13 data_dir_path = os.path.join(working_dir, data_dir)
14 filename = 'classes.dat'
15
16 if not os.path.exists(data_dir_path):
17 os.mkdir(data_dir_path)
18
19 # Some data pickle
20 classes = {}
21 classes['it-566'] = {}
22 classes['it-566']['room'] = 'Ballston Center 4004'
23 classes['it-566']['students'] = ['Wafa', 'Nawaf',
24 'Anthony', 'Dishant', 'Quinton',
25 'Najoud', 'Selenge']
26 # Print to console
27 print(f'Original Data:\n{classes}')
28
29 # Pickle
30 pickled_data = pickle.dumps(classes)
31

Serializing Objects To File With Pickle Chapter 16: File I/O

486 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
1
0
0
0
0

32 # Calculate digest signature to verify no tampering
33 expected_digest = hmac.new(b'some_key_value', pickled_data, \
34 hashlib.sha256).hexdigest()
35
36 # Write to file
37 with open(os.path.join(data_dir_path, filename), 'wb') as f:
38 f.write(pickled_data)
39
40 # Press any key to continue
41 input('Press Any Key To Continue...')
42 print('-' * 40)
43
44 # Read file and verify signature
45 pickled_data = None
46 classes = None
47 with open(os.path.join(data_dir_path, filename), 'rb') as f:
48 pickled_data = f.read()
49
50 digest = hmac.new(b'some_key_value', pickled_data, \
51 hashlib.sha256).hexdigest()
52
53 if not hmac.compare_digest(digest, expected_digest):
54 print(f'Invalid signature! Data is invalid.')
55 exit()
56 else:
57 print(f'Valid signature! Unpickling data.')
58 classes = pickle.loads(pickled_data)
59 print(f'{classes}')
60
61 except (OSError, Exception) as e:
62 print(f'Problem pickling data: {e}')
63
64
65 if __name__ == '__main__':
66 main()
67

Referring to example 16.9 — First, I import the pickle, hmac, hashlib, and os packages.
Next, in the body of the main() function, I set up the data file paths and create a dictionary named
classes and populate it with classroom and student names. Then, on line 30, I call
pickle.dumps() to serialize the classes dictionary.

To calculate the message digest, I call the hmac.hexdigest() method. Note the arguments
passed to the hmac.new() method. The first argument is a byte string b'some_key_value'. In the
wild, you would want to use a unique key and safeguard it to prevent unauthorized use. The sec-
ond argument is the message or data to use to generate the digest, and finally, the third argument is
the encryption algorithm. I have assigned the results to a variable named expected_digest to
denote that this is the value I expect when I later read the bytes from the file to ensure it has not
been tampered with. I then write the pickled bytes to the file.

To verify the file’s integrity, I read the file and calculate the message digest as before, then
compare the digest with the expected_digest using the hmac.compare_digest() method. If
the two values are identical, I deserialize the object with the pickle.loads() method. Figure 16-
13 shows the results of running this program.

Chapter 16: File I/O Saving JSON Data To File

Computer Scripting Techniques with Python © 2024 Pulp Free Press 487

0
0
0
1
0
0
0
0

3.1 You May Be In A Pickle

Pickle provides a quick, handy way to serialize objects for either saving to disk or transmitting
over the network. The problem with pickle is that it’s Python proprietary, meaning objects serial-
ized with pickle can only be deserialized with Python and pickle. Well, not so fast. A quick Goo-
gle search yielded the Pyrolite project on GitHub [https://github.com/irmen/Pyrolite] which
provides pickle capabilities to the Java and C# languages. Still, if sharing data is your intent, don’t
use pickle to save your data. Use JSON, XML, or CSV files instead.

If you really want to share binary serialized data between programming languages, use Goo-
gle’s language neutral Protocol Buffers. [https://protobuf.dev]

Quick Review

The pickle package provides a quick, easy way to serialize Python objects to they can be
saved to disk or transmitted over a network. Serialization is the process by which an object is con-
verted from its memory representation into a format suitable for saving to file or network trans-
mission. Deserialization is the process by which a serialized object is reconstituted into its
memory representation. Pickle is Python centric and best used by Python programs. If you really
need to share serialized binary data between different programming languages used Google’s Pro-
tocol Buffers.

4 Saving JSON Data To File

Saving JSON data to file is a cinch. I have already introduced you to JSON in previous chap-
ters. Once you have your JSON string you can simply write it to file in text mode as shown in
example 16.10.

16.10
1 """Demonstrate saving and reading JSON data to file."""
2
3 import json
4 import os
5
6 def main():
7 # Create dictionary with data
8 classes = {}
9 classes['it-590'] = {}
10 classes['it-590']['room'] = 'Ballston Center 3066'

Figure 16-13: Results of Running Example 16.9

Saving JSON Data To File Chapter 16: File I/O

488 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
1
0
0
0
0

11 classes['it-590']['students'] = ['Davis', 'Lewis', 'Quinton']
12
13 print(f'Classes Dictionary:\n{classes}')
14
15 try:
16 # Set up file paths
17 working_dir = os.getcwd()
18 data_dir = 'data'
19 data_dir_path = os.path.join(working_dir, data_dir)
20 filename = 'classes.json'
21
22 # Create data directory if it does not exist
23 if not os.path.exists(data_dir_path):
24 os.mkdir(data_dir_path)
25
26 # Convert data to json
27 json_string = json.dumps(classes)
28 print(f'Classes JSON:\n{json_string}')
29
30 # Write json to file
31 with open(os.path.join(data_dir_path, filename), 'w') as f:
32 f.write(json_string)
33
34 # Press any key to continue
35 input('Press any key to continue...')
36 print('-' * 40)
37
38 # Read the json file and convert back into dictionary
39 classes = None
40 json_string = None
41 with open(os.path.join(data_dir_path, filename), 'r') as f:
42 print(f'Reading JSON from file...')
43 json_string = f.read()
44 print(f'Converting JSON string to Dictionary...')
45 classes = json.loads(json_string)
46
47 # Print the dictionary and JSON string
48 print(f'JSON String:\n{json_string}')
49 print(f'Classes Dictionary:\n{classes}')
50
51 except (OSError, Exception) as e:
52 print(f'Problem with file I/O: {e}')
53
54
55 if __name__ == '__main__':
56 main()
57

Referring to example 16.10 — From the top, I import the Python library json package, create
a dictionary named classes and populate it with data, then convert the dictionary into a JSON
string using the json.dumps() method. This creates a JSON string, which is then written to a text
file. To reconstitute the dictionary, open the JSON file in text mode, read the entire file, then con-
vert the JSON string back into a dictionary with the json.loads() method. I must admit, the
hardest part about all this dumps() and loads() stuff is remembering which method does what!
Notice these methods perform essentially the same actions as the pickle.dumps() and
pickle.loads() methods, that is, json.dumps() serializes a Python object into a JSON text
string, and json.loads() deserializes a JSON test string back into a Python object.

Chapter 16: File I/O Saving JSON Data To File

Computer Scripting Techniques with Python © 2024 Pulp Free Press 489

0
0
0
1
0
0
0
0

4.0.1 JSON Serialization and Deserialization

One important thing to keep in mind about serializing Python objects into JSON is that the
json.dumps() method only works on fundamental Python types. If you try to convert a user-
defined type into JSON you will need to implement custom serialization or add a to_json()
method that provides the desired JSON representation of the object. I’ll show you how to do this
later in the book when you learn about classes and object-oriented programming.

4.0.2 Parting Thoughts

Note that since JSON is based on key/value pairs, it’s natural to start by creating a Python dic-
tionary and populate it to contain the data you want to convert to JSON. Use only fundamental
Python types as values within the dictionary to ensure maximum compatibility when sharing data
between systems.

Quick Review

To convert Python dictionaries to JSON import the json package and use the json.dumps()
method. To convert the JSON string back into a dictionary use the json.loads() method.

JSON is text. To save a JSON string to a file open the file for writing in text mode 'w'. To
read a JSON file, open the file in read text mode 'r', read the entire file, and convert it into a dic-
tionary.

Summary

Python makes it easy to work with files. You can do a lot with just a little bit of code. Use the
built-in open() function to open a file in a specified file mode: 'r', 'w', 'a', or 'x'. Python
treats files as containing either text 't' or binary 'b' data. Text mode is assumed. You must
explicitly set the binary file mode. Add the updating mode '+' to open a file for both reading and
writing.

The open() function returns a file object via which you interact with the file on disk. Use a
context manager to automatically manage the file resource.

A relative file path is formed starting from a directory other than the root volume. The Unix/
Linux file path separator is the forward slash '/'. The Windows file path separator is the backs-
lash '\'. A Unix/Linux absolute file path is formed starting from the root volume which is indi-
cated by a starting forward slash '/'. A Windows absolute file path begins with a drive letter.

Do not hard code file paths in Python programs. Use the os package to create and manipulate
OS-agnostic file paths.

Binary data underlies all data on a computer system. To write binary data to a file, open the
file in write binary 'wb' mode. To read binary data from a file, open the file in read binary 'rb'
mode. You cannot read or write text (ordinary strings) to a file opened for reading or writing
binary data and vice versa. A file opened in a binary mode cannot take an encoding argument.

Binary files support random file I/O. Use the seek() method to move the file pointer to a
desired location. Use the read() method to read bytes, and use the tell() method to obtain the
file pointer’s current position.

Saving JSON Data To File Chapter 16: File I/O

490 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
1
0
0
0
0

The pickle package provides a quick, easy way to serialize Python objects to they can be
saved to disk or transmitted over a network. Serialization is the process by which an object is con-
verted from its memory representation into a format suitable for saving to file or network trans-
mission. Deserialization is the process by which a serialized object is reconstituted into its
memory representation. Pickle is Python centric and best used by Python programs. If you really
need to share serialized binary data between different programming languages used Google’s Pro-
tocol Buffers.

To convert Python dictionaries to JSON import the json package and use the json.dumps()
method. To convert the JSON string back into a dictionary use the json.loads() method.

JSON is text. To save a JSON string to a file open the file for writing in text mode 'w'. To
read a JSON file, open the file in read text mode 'r', read the entire file, and convert it into a dic-
tionary.

Skill-Building Exercises

1. File Reading: Write a Python script that reads the contents of a text file named 'exam-
ple.txt' and prints its contents to the console.

2. File Writing: Write a Python script that writes a list of strings to a file named 'output.txt'
with each string on a new line. Open the file with a text editor and inspect the contents.

3. Appending To A File: Modify the program you created in exercise two above and append
strings to the file without overwriting the existing file.

4. Read a File Line-by-Line: Write a Python script that reads each line of 'output.txt' created
in the previous example one at a time and prints it to the console.

5. Counting Lines, Words, and Characters: Write a Python script that reads 'output.txt' and
prints the number of lines, words, and characters contained within the file.

6. Copying File Content: Write a Python script that copies the contents of 'output.txt' to a
file named 'copy.txt'.

7. Searching For A String: Write a script that searches a text file for a particular string and
returns the lines that contain the string.

8. JSON File Ops: Write a script that reads a JSON file, converts it into a dictionary, modifies
the data in some way, then converts the dictionary into a JSON string and saves it to the same
file.

9. Binary File Ops: Write a program that reads an image file you provide and prints the first N
number of bytes in hexadecimal and ASCII format. The image file can be of any image type:
JPEG, PNG, TIFF, etc.

Chapter 16: File I/O Saving JSON Data To File

Computer Scripting Techniques with Python © 2024 Pulp Free Press 491

0
0
0
1
0
0
0
0

10. CSV File Processing: Study the Python csv package. Write a program that reads a CSV file
and prints the data contained within it to the console. Print a count of the number of items in
each column and determine the type of data within each column. If the column data is numeric,
print the sum and average of the data.

Suggested Projects

1. Verify Image Files: Write a program that scans a designated directory for image files and vali-
dates the type of each image file by reading the first two bytes of each file. Note: You will need
to study each of the image file formats to learn what combination of bytes comprise the Start of
Image (SOI) sequence.

2. Simple Text File Editor: Write a simple text file editor that lets you create, open, edit, and
save text files.

3. Image Metadata Extractor: Research the Python pillow package. Write a program that lets
you extract metadata from images using the pillow package.

4. Binary Data Compression Tool: Write a program that enables the user to compress and
decompress binary files using Huffman coding or Run-Length Encoding (RLE).

5. Working with Zip Files: Research the Python zipfile package. Write a program that zips the
contents of a designated directory.

6. Working with Zip Files: Write a program that lists the contents of a zip file and allows the
user to choose one or files for extraction.

7. Diary Entry Application: Write a program that lets users create dated diary entries. Save each
entry as a separate line in a text file. Allow users to filter and print diary entries by date.

8. Expense Tracker: Write a program that lets users enter, filter, and print expenses. The program
should be able to save expense data to a file. Consider carefully how you will represent
expenses within the program and the structure the data will take within the file. Ensure the
expense data stored within the file is cross-platform compatible and can be easily shared with
other applications.

9. Expense Export Utility: Write a program that reads a saved expenses file created in Suggested
Project 8 above and exports it to CSV format for import into Microsoft Excel.

10. Test File Merge Utility: Write a program that lets the user select one or more text files and
merge them into one text file. Order the merged content by file date.

Saving JSON Data To File Chapter 16: File I/O

492 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
1
0
0
0
0

Self-Test Questions

1. What two primary types of data can be written to a file?

2. What is the default file mode if none is provided to the open() function?

3. What method can you use to check for the existence of a file?

4. (True/False) You can write Python strings (str) to a file opened in write binary 'wb' mode.

5. What does the write() method return when writing to a binary file?

6. What does the write() method return when writing to a text file?

7. What is a file pointer?

8. At what position does the file pointer start at when you open a file in 'w' or 'wb' modes?

9. What position does the file pointer indicate after reading the entire contents of a file?

10. What value does the tell() method return?

References

Python Documentation, Python Built-In open() Function: https://docs.python.org/3/library/
functions.html#open

CIPA DC-008-Translation-2012 PDF: https://www.cipa.jp/std/documents/e/DC-008-
2012_E.pdf

Python Documentation, File Objects: https://docs.python.org/3/c-api/file.html

Python Documentation, The Python Standard Library: https://docs.python.org/3/library/
index.html

The Code Project, Understanding and Reading Exif Data: https://www.codeproject.com/Arti-
cles/47486/Understanding-and-Reading-Exif-Data

Python Documentation, Core Tools For Working with Streams: https://docs.python.org/3/
library/io.html

Chapter 16: File I/O Saving JSON Data To File

Computer Scripting Techniques with Python © 2024 Pulp Free Press 493

0
0
0
1
0
0
0
0

Notes

Saving JSON Data To File Chapter 16: File I/O

494 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
1
0
0
0
0

	Ch-16: File I/O
	1.1 File Modes
	1.2 The File Object And Its Methods
	1.3 File Paths
	1.3.1 Relative Paths
	1.3.2 Absolute Paths
	1.3.2.1 Linux and macOS
	1.3.2.2 Windows

	1.3.3 Forming OS-Agnostic File Paths
	1.3.3.1 Parting Thoughts

	2 Binary Data and Random File I/O
	2.1 Binary Data
	2.1.1 Text Is Encoded Binary Data

	2.2 Writing and Reading Binary Data
	2.3 More About Seeking
	2.4 Binary Strings vs. Text
	2.5 Reading Image Metadata
	2.5.1 Background
	2.5.2 Basic JPEG File Structure
	2.5.3 Example Code
	2.5.4 Parting Thoughts

	3 Serializing Objects To File With Pickle
	3.1 You May Be In A Pickle

	4 Saving JSON Data To File
	4.0.1 JSON Serialization and Deserialization
	4.0.2 Parting Thoughts

