
Computer Scripting Techniques with Python © 2024 Pulp Free Press 439

0
0
0
0
1
1
1
1

00001111

Ch-15: Dictionaries

Learning Objectives
• Explain the term key/value pair
• List the desirable characteristics of a key
• Explain the purpose of a dictionary
• Create and initialize dictionaries using curly braces { }
• Create and initialize dictionaries using the dict() constructor
• Extract dictionary key/value pairs with the items() method
• Iterate over a dictionary using a for statement
• Create and initialize dictionaries using dictionary comprehensions
• Access dictionary values by key
• Extract dictionary key lists
• Add list objects to a dictionary
• Convert a dictionary into a JSON string
• Convert a JSON string into a dictionary

CHAPTER 15

Dictionaries

Chapter 15: Dictionaries

440 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
1
1
1

Introduction

You will often find it helpful to store and access data based on some type of mapping, where a
key is used to calculate a location in which to store some type of value. Such data is said to consist
of key/value pairs. Python provides a mapping type that does just this — the dictionary or dict.

In this chapter you will learn how to create and use dictionaries in your programs. You’ll learn
how to add keys and values to dictionaries, what types of objects make good keys, and how to for-
mulate key names that translate well into cross-platform compatible JSON. This is a critical skill
to add to your programmer’s tool belt because the best way to create valid JSON is to start with a
dictionary.

Also in this chapter you’ll learn how to process dictionaries using for statements by iterating
over a dictionary’s key/value pairs. You’ll also learn when to use dictionaries

The beautiful thing about dictionaries is that once you learn how to use them, you’ll wonder
how you ever lived without them. Once you learn to master the power dictionaries provide, you’ll
think of a zillion ways to use them in your programs.

1 Dictionary Fundamentals

A dictionary (dict) is a Python data type that lets you store and access data using key/value
pairs. A key is used to index its associated data or value. Keys must be immutable, which limits
the types of objects that can be used as keys. Values can be anything, including other dictionaries.

A dictionary is but one of a small handful of Python mapping types, but it’s the one most often
used. Dictionaries are also referred to as hash tables or associative arrays. Figure 15-1 gives a
simplified conceptual view of how a dictionary insertion works.

Referring to figure 15-1 — The incoming key "a" is hash mapped to an index value which is
then used as an index into a keys table. Information about the incoming key and value is stored in
a KeyEntry object which has fields for the hash, key, and value.

1.1 Why Must A Key Be Immutable?

A key must be immutable because its value cannot change while it exists. Python immutable
types provide a __hash__() function which calculates and returns a hash value unique to the
key’s content. Key hash values are salted with a random number which changes between Python

Figure 15-1: Dictionary — A Conceptual View

Chapter 15: Dictionaries

Computer Scripting Techniques with Python © 2024 Pulp Free Press 441

0
0
0
0
1
1
1
1

interpreter sessions. In other words, hash values for a particular key change each time a program
executes but remain constant while the program is running. Keys must also be unique within a
particular dictionary instance. Subsequent values inserted with the same key will overwrite previ-
ous values. I’ll talk more about this later.

Strings make great keys, as do numbers. Tuples can be used for keys but the objects within the
tuple must also be immutable. I use strings as keys and have never encountered a need to do oth-
erwise.

1.2 Creating And Populating Dictionaries

You can create and populate dictionaries in several ways as shown in example 15.1.
15.1 creating_dictionaries.py

1 """Demonstrate how to create dictionaries."""
2
3 def main():
4 # Print hash values of strings
5 keyOne = "a"
6 print(f' keyOne.__hash__() == {keyOne.__hash__()}')
7 print(f' "a".__hash__() == {"a".__hash__()}')
8 print(f' "aa".__hash__() == {"aa".__hash__()}')
9 print(f'("a" + "a").__hash__() == {("a" + "a").__hash__()}')
10
11 # Create an empty dictionary with braces
12 my_dict = {}
13
14 # Insert a value using keyOne
15 my_dict[keyOne] = "valueOne"
16
17 # Reusing same key will overwrite stored value
18 my_dict["a"] = "valueTwo"
19
20 # Print entire dictionary
21 print(f'my_dict == {my_dict}')
22
23 # Access dictionary elements via key
24 print(f'Value at my_dict[keyOne] == {my_dict[keyOne]}')
25 print(f'Value at my_dict["a"] == {my_dict["a"]}')
26
27 # Create empty dictionary with dict() constructor
28 book_info = dict()
29 book_info['bookTitle'] = 'Computer Scripting Techniques with Python'
30 book_info['author'] = 'Rick Miller'
31 book_info['isbn13'] = '978-1-932504-13-2'
32 print(f'book_info == {book_info}')
33
34 # Create dictionary with dictionary literal
35 classrooms = {'bal-4004':{'instructor':'R. Miller'},
36 'bal-3066':{'instructor':'K. Nesvit'}}
37 print(f'classrooms == {classrooms}')
38
39 if __name__ == '__main__':
40 main()
41

Referring to example 15.1 — Starting on line 5, I declare a variable named keyOne and initial-
ize it to the character "a". On lines 6 through 9, I print various hash values by calling the

Chapter 15: Dictionaries

442 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
1
1
1

__hash__() method on keyOne, "a", "aa", and ("a" + "a"). On line 12, I create an empty dic-
tionary using a set of empty braces "{}". Then, on line 15, I use the variable keyOne as a key and
assign the string value "valueOne". Then, on line 18, I use the character "a" as a key and assign
the string value "valueTwo". Because the variable keyOne and "a" represent the same key, the
value associated with that key is overwritten, the effects of which are shown when printing the
entire dictionary to the console on line 21, and again when printing individual values to the con-
sole on lines 24 and 25.

Another way to create a dictionary, shown on line 28, is with the dict() constructor. I then
use various string keys on lines 29 through 31 to store information about a book. On line 32, I
print the entire book_info dictionary to the console.

Finally, on line 35, I use a dictionary literal to initialize a dictionary named classrooms. On
line 37, I print the classrooms dictionary to the console. Figure 15-2 shows the results of running
this program twice.

Referring to figure 15-2 — Notice that each program run produces different key hash values.
Again, this is due to hash values being seeded with a random number each time a program exe-
cutes. This is done to prevent hacking. You can learn more about how hashing works in the
Python interpreter by reading CPython Internals: Your Guide To The Python 3 Interpreter, First
Edition, by Anthony Shaw, ISBN: 9781775093343.

Still referring to figure 15-2 — Notice how valueTwo has overwritten valueOne. This is the
general behavior of dictionaries and can be summarized like so: "The last man wins!".

When printing an entire dictionary to the console, it is enclosed in curly braces with keys
being separated from values by a colon ':'. In this example, all the keys and their associated val-
ues are enclosed in single quotes indicating they are strings. Note that the classrooms dictionary
contains dictionaries as values. They are contained within curly braces because they are dictionar-
ies. Let’s look at another example with different types of objects being used as keys and values.

Figure 15-2: Results of Running Example 15.1 Twice

Chapter 15: Dictionaries

Computer Scripting Techniques with Python © 2024 Pulp Free Press 443

0
0
0
0
1
1
1
1

15.2 multi_object.py
1 """Demonstrate dictionaries with different types as keys and values."""
2
3 def main():
4 # Numbers as keys and values
5 d1 = {1:100, 2:200, 3:300}
6 print(f'd1 == {d1}')
7
8 # String keys with list and number values
9 d2 = {'names': ['Judy', 'Davis', 'Lewis'], 'count':3}
10 print(f'd2 == {d2}')
11
12
13 if __name__ == '__main__':
14 main()
15

Referring to example 15.2 — On line 5, I create a dictionary named d1 comprised of numeric
keys and values. On line 9, I create dictionary d2 comprised of string keys, and a list and a number
as values. Figure 15-3 shows how each of these dictionaries renders to the console.

Referring to figure 15-3 — Note how the numeric values and the list are rendered within the
dictionary output. Numeric values are not surrounded in quotes while lists are contained within a
set of square brackets.

1.3 Dictionary Comprehensions

Another way to create and initialize a dictionary is with a dictionary comprehension. Example
15.3 converts a text document into a dictionary of paragraphs indexed by paragraph number.

15.3 dictionary_comprehension.py
1 """Demonstrate dictionary comprehensions."""
2
3 def main():
4 document = '\tAs a kid, I dreamed of exploring the Amazon jungle. ' \
5 'My friends and I watched a TV show about Amazon explorers and ' \
6 'their adventures.\n\tThey became tangled in huge webs and fought ' \
7 'huge spiders. Every creature seemed larger than life.\n' \
8 '\tWhen we finished watching the show, we explored the woods next ' \
9 'to our neighborhood and imagined we were exploring the Amazon. ' \
10 'We fashioned machetes from aluminum window frames and chopped ' \
11 'our way through the brush as best we could. To us kids, the ' \
12 'machetes were real and our adventures were just as exciting. ' \
13 'Thankfully, the spiders were small.'
14
15 # Print document to console for reference
16 print(document)
17 print('*' * 60)

Figure 15-3: Results of Running Example 15.2

Chapter 15: Dictionaries

444 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
1
1
1

18
19 # Split the document into list of paragraphs
20 paragraph_list = document.split('\n')
21
22 # Use the enumerate() function to extract the indices and values from list
23 paragraph_dict = {(key + 1):value for key, value in enumerate(paragraph_list)}
24
25 # Print the key and value of each dictionary entry
26 for key, value in paragraph_dict.items():
27 print(f'Paragraph {key}: {value}')
28
29
30 if __name__ == '__main__':
31 main()
32

Referring to example 15.3 — On line 4, I initialize a variable named document with the text
of a short story from my youth. Next, I print the document to the console for reference. On line
20, I create a list of paragraphs by splitting the document at the newline '\n' characters. On line
23, I use a dictionary comprehension to create a dictionary from the list of paragraphs. As you
learned in the previous chapter, the enumerate() function returns both the indices and values
from a list. The indices are numbers so they are valid keys. I add one to each key mainly so the
first paragraph in the dictionary has a key value of 1 vs. 0. Finally, the for statement on line 26
iterates through the dictionary items and prints each key/value pair to the console. Note that the
dictionary.items() method returns an iterable set of key/value pairs. Figure 15-4 shows the
results of running this program.

1.3.1 Parting Thoughts On Dictionary Comprehensions

Like their list comprehension counterparts, dictionary comprehensions can often be used to
simplify and optimize dictionary initialization, but overly-complex dictionary comprehensions
can lead to obfuscated code.

Pro Tip: Avoid the use of overly-complex dictionary comprehensions.

Figure 15-4: Results of Running Example 15.3

Chapter 15: Dictionaries Processing Dictionaries

Computer Scripting Techniques with Python © 2024 Pulp Free Press 445

0
0
0
0
1
1
1
1

Quick Review

A dictionary (dict) is a Python mapping data type that lets you store and access data using
key/value pairs. A key is used to index its associated data or value. Keys must be immutable,
which limits the sorts of objects that can be used as keys. Values can be anything, including other
dictionaries.

A key must be immutable because its value cannot change while it exists. Immutable objects
provide a __hash__() function. The value calculated and returned by the __hash__() function
must always be the same for a given object state.

You can create dictionaries in several different ways. The most often used approach is to first
create an empty dictionary with an empty set of curly braces "{}" and set each key/value individ-
ually.

The dictionary.items() method returns an iterable set of key/value pairs.
Avoid the use of overly-complex dictionary comprehensions as they can lead to obfuscated

code.

2 Processing Dictionaries

In the previous section you learned pretty much all you need to know about dictionaries to put
them to effective use in your programs. In this section, I’d like to raise your awareness about a
handful of unique features and operations supported by dictionaries. First, let’s take a look at
operations supported by dictionaries.

2.1 Operations Supported By Dictionaries

Table 15-1 lists operations supported by dictionaries. You’ve seen some of these in action in
the previous section. Note that this is an abridged listing. To learn more about an operation please
consult the reference listed at the bottom of the table.

Operation Result

dictionary = {} Create empty dictionary with empty curly braces.

dictionary = dict() Create empty dictionary with dict() constructor.

dictionary[key] = value Add value to dictionary indexed by key. Key must be an immutable
object. Overwrites value if key already in dictionary. (Last man wins!)

dictionary[key] Return value indexed by key. Raises KeyError exception if key not in
dictionary.

len(dictionary) Returns number of items in dictionary.

list(dictionary) Returns list of keys in inserted order.

iter(dictionary) Returns an iterator over the keys in the dictionary.

reversed(dictionary) Return a reverse iterator over the keys contained in the dictionary.

Table 15-1: Operations Supported by Dictionaries

Processing Dictionaries Chapter 15: Dictionaries

446 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
1
1
1

Referring to table 15-1 — Operations fall into several broad categories:
• Operations concerned with keys
• Operations concerned with values
• Operations concerned with items (i.e., key/value pairs)

For example, and most obvious, are the methods dictionary.keys(), dictionary.val-
ues(), and dictionary.items(). What’s not so obvious is that these methods return dictionary

sorted(dictionary) Returns list of keys in sorted order.

del dictionary[key] Delete value indexed by key. Raises KeyError exception if key not in
dictionary.

key in dictionary Returns True if dictionary contains key.

key not in dictionary Returns True if key not contained in dictionary.

dictionary.items() Returns iterable set of key/value pairs. (A dynamically updated view
object)

dictionary.clear() Removes all items from dictionary.

dictionary.copy() Returns a shallow copy of the dictionary.

dictionary.get(key,
default=None)

Return value indexed by key if key is in the dictionary, else return the
default value.

dictionary.keys() Returns an iterable set of the dictionary’s keys. (A dynamically updated
view object.)

dictionary.pop(key [,
default])

Return value indexed by key if key is in the dictionary, else return
default. If default value is not provided, raises KeyError exception.

dictionary.popitem() Return and remove a key/value pair from the dictionary. Items are
returned in Last-In-First-Out (LIFO) order. Raises KeyError exception
if dictionary is empty.

dictionary.setdefault(key,
default=None)

Return value indexed by key if key is in the dictionary, otherwise, insert
key with value of default and return default. (default initialized by
default to None)

dictionary.update([other]) Update dictionary with key/value pairs from another dictionary or an
iterable of key/value pairs and overwrite existing keys. Can also supply
key/value pair arguments.

dictionary.values() Returns an iterable set of the dictionary’s values. (Dynamically updated
view object.)

dictionary | other Create a new dictionary with the merged keys and values of dictionary
and other.

dictionary |= other Update dictionary with keys and values from other. Key/values from
other will overwrite shared keys in dictionary.

Source: https://docs.python.org/3/library/stdtypes.html#mapping-types-dict

Operation Result

Table 15-1: Operations Supported by Dictionaries (Continued)

Chapter 15: Dictionaries Processing Dictionaries

Computer Scripting Techniques with Python © 2024 Pulp Free Press 447

0
0
0
0
1
1
1
1

view objects. Always keep in mind that the term item refers to a particular key/value pair. So when
you call the dictionary.items() method, it will return a dictionary view object of key/value
pair tuples. I cover dictionary view objects in more detail in the next section.

Ordinary dictionary access in the form of dictionary[key] will raise a KeyError exception
if the key is not in the dictionary. All dictionary processing operations should be enclosed within a
try/except statement. If you are unsure if the key you are trying to access is actually present in
the dictionary, use the dictionary.get(key, default=None) method to avoid raising an
exception.

Pro Tip: Place dictionary processing code in a try/except statement to properly handle KeyError excep-
tions.

2.1.1 Dictionary View Objects

Dictionary view objects dynamically update when changes are made to the underlying dictio-
nary. Let’s take a look at the dictionary.items() method in action.

15.4 dictionary_view_objects.py
1 """Demonstrate dictionary view objects."""
2
3 def main():
4 # Create and initialize dictionary
5 animals = {}
6 animals['zebra'] = 'Horse-like animal with black and white stripes.'
7 animals['rooster'] = 'Male chicken. Very annoying in the morning.'
8 animals['dog'] = 'Man\'s best friend.'
9 animals['cat'] = 'Internet star!'
10
11 # Extract view object
12 animal_items = animals.items()
13
14 # Iterate over view object's key/value pairs
15 for key, value in animal_items:
16 print(f'{key} : {value}')
17
18 # Add another item
19 animals['pony'] = 'Every little girl\'s dream.'
20
21 print('*' * 60)
22
23 # Iterate over view object's sorted key/value pairs
24 for key, value in sorted(animal_items):
25 print(f'{key} : {value}')
26
27 if __name__ == '__main__':
28 main()
29

Referring to example 15.4 — Starting on line 5, I create a dictionary named animals and pop-
ulate it with four items: a zebra, a rooster, a dog, and a cat. On line 12, I create a variable
named view_items and assign to it the items view object by calling the animals.items()
method. Using the for statement on line 15, I iterate over the items and print the key/value pairs
to the console. Next, on line 19, I add another animal to the dictionary, and again I iterate over the

Converting Dictionaries To JSON Chapter 15: Dictionaries

448 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
1
1
1

items with a for loop. I use the sorted() function to obtain the keys in sorted order. Figure 15-5
shows the results of running this program.

Referring to figure 15-5 — Items are normally accessed via an iterator in the order in which
they were inserted, also referred to as first-in-first-out or FIFO for short. The sorted() function
sorts the keys in ascending order. Likewise, if you wanted to obtain the keys in reverse order, you
would use the reversed() function.

Quick Review

Dictionaries support a wide range of operations. Dictionary operations fall into three broad
categories: operations concerning keys, operations concerning values, and operations concerning
both keys and values (key/value pairs, otherwise referred to as items).

The methods dictionary.items(), dictionary.keys(), and dictionary.values()
return dictionary view objects, which dynamically update when the underlying dictionary
changes.

Place dictionary processing code in a try/except statement to properly handle cases where
an attempted key access raises a KeyError exception.

3 Converting Dictionaries To JSON

A dictionary is a wonderful place to start if you want to generate valid, cross-platform com-
patible JSON. JSON has become the de facto standard data interchange format, surpassing even
XML in that honored position. Converting data into JSON enables you to share data between sys-
tems and applications running on different hardware and software platforms. The one weird trick
that makes this possible is knowing how to create valid JSON with the help of a dictionary.

I this section, you’ll learn how to build a dictionary with JSON generation in mind, and how
to formulate JSON-valid keys. I’ll limit the conversation to building complex JSON structures
from standard Python types. Later in the book when you learn about object-oriented programming
and how to create classes, I’ll show you how to convert user-defined types into valid JSON.

Let’s start with a few simple rules.

Figure 15-5: Results of Running Example 15.4

Chapter 15: Dictionaries Converting Dictionaries To JSON

Computer Scripting Techniques with Python © 2024 Pulp Free Press 449

0
0
0
0
1
1
1
1

3.1 A Few Simple Rules

You only need to keep a few simple rules in mind to build a dictionary that can be converted
into valid JSON and reliably shared with other systems and programming languages. The rules
are listed in table 15-2.

Referring to table 15-2 — This looks like a lot to keep in mind, but really it boils down to the
following: Use strings for keys and adopt a consistent key case, stick with fundamental data
types for values, use a universal format for datetime strings, avoid special characters if at all
possible but if you can’t, make sure the data is properly represented and escaped, and finally,
test the generated JSON to ensure validity.

If you’re new to JSON, you may want to keep a copy of these rules at hand when you’re add-
ing data to a dictionary. If you try to convert a dictionary to JSON and it contains bad data, the
json.dumps() method will raise an exception.

Rule Discussion

Use Strings for Key Names Only use strings for key names. Do not use numbers or tuples.

Use camelCase or snake_case
for Key Names

Either case is fine and portable across platforms, but I have my prefer-
ences. For JSON I intend to share with other systems, I use camelCase.
For JSON I intend to use internal to my program, for example, a settings
or application configuration file, I use snake_case.

Use Consistent Key Name Case Whether you use camelCase or snake_case for key names, be consis-
tent. Do not mix case types for keys within the same dictionary.

Limit Values to Fundamental Data
Types

For example, strings, numbers, boolean, lists, and dictionaries. All these
types of objects can be easily reconstituted by other programming lan-
guages.

Reduce Complex User-Defined
Data Types to Fundamental Data
Type JSON Representations

Related to the previous rule. Later in the book, I’ll show you how to con-
vert complex user-defined types into valid JSON.

Limit Data to ASCII Characters If your data contains non-ASCII ensure it is properly escaped. JSON data
should be transmitted using UTF-8 encoding.

Express Dates in ISO 8601 Format Takes the guesswork out of datetime strings by providing a format for
exact datetime expression: yyyy-mm-ddThh:mm:ss-00:00

Convert NaN or Infinity values to
None

The Python None value translates to null in JSON.

Escape Special Characters Escape special characters such as embedded quotes, backslashes, and
control characters.

Ensure Valid JSON Syntax Test generated JSON with an online JSON validation service.

Test Across Platforms While following the rules listed in this table will produce valid JSON,
always test the hell out of everything on the target system before using in
production.

Table 15-2: Simple Rules For Valid JSON

Converting Dictionaries To JSON Chapter 15: Dictionaries

450 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
1
1
1

3.2 The Rules In Action

Example 15.5 gives a program that builds up a complex dictionary using many of the rules
listed in table 15-2, generates JSON, saves the JSON to a file, then reads the file and creates a new
dictionary from the JSON string.

15.5 json_from_dictionary.py
1 """Demonstrate building complex dictionary structure to generate valid JSON."""
2
3 import json
4 from datetime import datetime
5
6 def main():
7 # Create dictionary following rules from table 15-2
8 classes = {}
9 classes['it566'] = {}
10 classes['it566']['campus'] = 'Ballston Center'
11 classes['it566']['semester'] = 'Fall'
12 classes['it566']['year'] = 2024
13 classes['it566']['dates'] = {}
14 classes['it566']['dates']['begin'] = datetime(2024, 8, 26).isoformat()
15 classes['it566']['dates']['end'] = datetime(2024, 12, 7).isoformat()
16 classes['it566']['classroom'] = '4004'
17 classes['it566']['students'] = []
18
19 s1 = {'firstName':'Kateryna', 'lastName':'Nesvit'}
20 s2 = {'firstName':'Sapna', 'lastName':'Surana'}
21 s3 = {'firstName':'Jose', 'lastName':'Pi'}
22
23 classes['it566']['students'].append(s1)
24 classes['it566']['students'].append(s2)
25 classes['it566']['students'].append(s3)
26
27 # Convert dictionary to JSON and write to file
28 try:
29 with open('classes.json', 'w') as f:
30 f.write(json.dumps(classes))
31 except Exception as e:
32 print(f'Problem writing JSON to file: {e}')
33
34 # Read JSON file and create new dictionary
35 new_classes_dict = None
36 try:
37 with open('classes.json', 'r') as f:
38 new_classes_dict = json.loads(f.read())
39 except Exception as e:
40 print(f'Problem writing JSON to file: {e}')
41
42 if new_classes_dict != None:
43 print(f'New Classes Dictionary = {new_classes_dict}')
44
45
46 if __name__ == '__main__':
47 main()
48

Referring to example 15.5 — Note first that all key names are strings and in camelCase. The
only two-syllable key not in camelCase is classroom on line 16. Note that camelCase is nor-
mally formed from multiple words, where the first word starts with a lower-case letter and each

Chapter 15: Dictionaries Converting Dictionaries To JSON

Computer Scripting Techniques with Python © 2024 Pulp Free Press 451

0
0
0
0
1
1
1
1

subsequent word starts with an upper-case letter. (i.e., IT 566 becomes it566, First Name becomes
firstName, Last Name becomes lastName, etc.)

Note also that on each highlighted line the required data structure is created before it can be
populated. For example, on line 8, I create the topmost dictionary named classes. On line 9, the
first class I add to the dictionary is it566, which is also a dictionary.

The next dictionary is created on line 13, classes['it566']['dates'] = {}. I create date-
time objects then call the datetime.isoformat() method to render the datetime strings in ISO
8601 format. The default output string format is 'yyyy-mm-ddThh:mm:ss'.

On line 17, I create an empty list of students. On lines 19 through 21, I create several student
dictionaries, then append them to the students list on lines 23 through 25.

On lines 29 and 30, I use the built-in open() function to open a file for writing, then convert
the classes dictionary to JSON using the json.dumps() method and write the JSON to the file. In
this case, the name of the output file is classes.json.

Finally, to prove this is not a hoax, I create a new dictionary named new_classes_dict and
then open the classes.json file and convert the JSON string back into a Python dictionary with
the json.loads() method. Figure 15-6 shows the results of running this program.

Example 15.6 lists the contents of the classes.json file.
15.6 classes.json File Contents

1 {
2 "it566": {
3 "campus": "Ballston Center",
4 "classroom": "4004",
5 "dates": {
6 "begin": "2024-08-26T00:00:00",
7 "end": "2024-12-07T00:00:00"
8 },
9 "semester": "Fall",
10 "students": [
11 {
12 "firstName": "Kateryna",
13 "lastName": "Nesvit"
14 },
15 {
16 "firstName": "Sapna",
17 "lastName": "Surana"
18 },
19 {
20 "firstName": "Jose",
21 "lastName": "Pi"
22 }
23],
24 "year": 2024
25 }
26 }

Figure 15-6: Results of Running Example 15.5

Dictionary Use Cases Chapter 15: Dictionaries

452 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
1
1
1

Referring to example 15.6 — This JSON has been sorted and formatted for readability using
the Visual Studio JSON: Sort Document feature. Note how the datetime strings are rendered in
ISO 8601 format.

3.3 So, Tell Me Again Why I Need JSON?

There are other ways (i.e., Pickle, etc) to serialize Python objects for either data transmission
or saving to disk, but they are not portable across systems, hardware, and programming lan-
guages. Valid, properly formatted JSON is platform agnostic.

Quick Review

JSON is the de facto standard for information interchange between systems, platforms, and
programming languages. By following a few simple rules, you can build complex Python dictio-
nary structures that can then be converted into valid, platform agnostic JSON.

4 Dictionary Use Cases

Dictionaries come in handy in many situations, some of which might surprise you. In this sec-
tion, I’d like to introduce you to several dictionary use cases and provide a few examples. Table
15-3 lists a heaping handful of dictionary use cases.

Use Case Discussion

General Mapping Mapping keys to values. Provides a way to retrieve data based on a
unique identifier. This is the basic dictionary use case.

Caching Repeatedly accessed data or time-consuming calculations can be stored
as values and accessed via a key

Application Configuration Settings Application settings subject to change can be stored in a dictionary. The
application accesses settings via a setting name key.

Application State Similar to application configuration settings, a dictionary can be used to
record last window location coordinates, theme settings, last used direc-
tory, etc.

JSON Data Generation As discussed in the previous section, dictionaries make a great starting
point for the formulation of valid, cross-platform compatible JSON.

Counting and Frequency Analysis Counting occurrences of elements within a collection or the frequency
distribution of items.

Feature Flags Applications can use a dictionary to check if a particular feature is
enabled or disabled. This is related to the Application Configuration Set-
tings use case above.

Error Handling Map error codes or messages to their corresponding descriptions or
actions.

Table 15-3: Dictionary Uses Cases

Chapter 15: Dictionaries Dictionary Use Cases

Computer Scripting Techniques with Python © 2024 Pulp Free Press 453

0
0
0
0
1
1
1
1

Referring to table 15-3 — This is not an exhaustive list by no means. For examples of how
dictionaries are used within the Python language itself see: https://github.com/python/cpython/
blob/main/Objects/dictnotes.txt

You’ll encounter many of the dictionary use cases listed above as you progress through the
book. Also, there are many places within the Python API where dictionaries are used to store and
retrieve vital information. Example 15.7 briefly demonstrates the use of the environ dictionary
found in the os module.

15.7 os_environ.py
1 """Demonstrates the use of the os.environ dictionary."""
2
3 import os
4
5 def main():
6 for key, value in os.environ.items():
7 print(f'{key} : {value}')
8
9
10 if __name__ == '__main__':
11 main()
12

Referring to example 15.7 — First, I import the os package. Next, on line 6, I iterate over the
os.environ dictionary items and print each key and value. Figure 15-4 shows the results of run-
ning this program.

Figure 15-7: Results of Running Example 15.7

Parting Thoughts On Dictionaries Chapter 15: Dictionaries

454 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
1
1
1

Referring to figure 15-7 — Notice how each key is in capital letters and snake_case. You’ll
find the os module quite useful as you expand your knowledge of Python programming.

Quick Review

The use cases for dictionaries are many and varied and range from general mapping applica-
tions where data can be indexed with unique keys, to application settings, caching, counting, and
JSON data generation.

5 Parting Thoughts On Dictionaries

Python dictionaries are optimized for speed. They automatically resize to accommodate large
sets of keys and values. They utilize a key/value structure where each key is unique and must be
an immutable type, and values can be just about any type, including lists and dictionaries.

Dictionaries are mutable and unordered. The order of keys returned by the dictio-
nary.keys() method is first-in-first-out (FIFO). To sort the keys upon retrieval use the sorted()
built-in function.

Internally, dictionary entries are hashed for efficient retrieval of values. Dictionary elements
are accessed via key. A dictionary item includes both the key/value pair. You can retrieve and iter-
ate over dictionary items via the dictionary.items() method.

Summary

A dictionary (dict) is a Python mapping data type that lets you store and access data using
key/value pairs. A key is used to index its associated data or value. Keys must be immutable,
which limits the types of objects that can be used as keys. Values can be anything, including other
dictionaries.

A key must be immutable because its value cannot change while it exists. Immutable objects
provide a __hash__() function. The value calculated and returned by the __hash__() function
must always be the same for a given object state.

You can create dictionaries in several different ways. The most often used approach is to first
create an empty dictionary with an empty set of curly braces "{}" and set each key/value individ-
ually.

The dictionary.items() method returns an iterable set of key/value pairs.
Avoid the use of overly-complex dictionary comprehensions as they can lead to obfuscated

code.
Dictionaries support a wide range of operations. Dictionary operations fall into three broad

categories: operations concerning keys, operations concerning values, and operations concerning
both keys and values (key/value pairs, otherwise referred to as items).

The methods dictionary.items(), dictionary.keys(), and dictionary.values()
return dictionary view objects, which dynamically update when the underlying dictionary
changes.

Place dictionary processing code in a try/except statement to properly handle cases where
an attempted key access raises a KeyError exception.

Chapter 15: Dictionaries Parting Thoughts On Dictionaries

Computer Scripting Techniques with Python © 2024 Pulp Free Press 455

0
0
0
0
1
1
1
1

JSON is the de facto standard for information interchange between systems, platforms, and
programming languages. By following a few simple rules, you can build complex Python dictio-
nary structures that can then be converted into valid, platform agnostic JSON.

The use cases for dictionaries are many and varied and range from general mapping applica-
tions where data can be indexed with unique keys, to application settings, caching, counting, and
JSON data generation.

Skill-Building Exercises

1. Deeper Exploration: Explore the source code for the CPython dictobject implementation.
This may be quite challenging if you are not familiar with the C programming language. Follow
the code and figure out how the hash values are calculated and stored. The source code for the
Python dictionary is located here: https://github.com/python/cpython/blob/main/Objects/dictob-
ject.c

2. Deeper Exploration: Continuing with the study of the CPython dictobject.c source code
file, draw the internal structure of a Python dictionary.

3. Dictionary Use Cases: Search online for examples of how Python dictionaries are used. Did
you find any that were not mentioned in this chapter?

4. Documentation Deep Dive: Study the Python documentation at https://docs.python.org/3/ref-
erence/index.html. Focus on dictionaries and mapping types in general. Note any topics not
covered in this chapter.

5. Dictionary Operations: Study table 15-1 and try out any dictionary operations not specifically
demonstrated in this chapter.

6. Dictionary Merging: Explore different ways to merge two or more dictionaries, handling con-
flicts and duplicate keys appropriately.

7. Dictionary Iteration: Practice iterating over the keys, values, and key-value pairs of dictionar-
ies using for loops and dictionary comprehensions.

8. Dictionary Comprehensions: Practice creating dictionaries with dictionary comprehensions.
Search the Internet for examples of dictionary comprehensions.

9. JSON Deep Dive: Study the JSON Specification located at https://www.json.org/json-en.html

10. Nested Dictionaries: Practice creating and accessing dictionaries that contain nested lists and
dictionaries. See example 15.5.

Parting Thoughts On Dictionaries Chapter 15: Dictionaries

456 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
1
1
1

Suggested Projects

1. Word Frequency Counter: Create a program that reads a text file and generates a dictionary
where the keys are words and the values are the frequencies of those words in the text.

2. Contact Manager: Build an interactive contact manager application that uses a dictionary to
store contact information (e.g., name, phone number, email). Implement features such as adding
contacts, searching for contacts, and deleting contacts.

3. Inventory Management System: Develop a system for managing inventory using dictionaries
to store product information (e.g., name, price, quantity). Include features for adding new prod-
ucts, updating quantities, and generating reports.

4. Language Translator: Build a simple language translator using dictionaries to map words or
phrases from one language to another. Users can input text, and the program will translate it
based on the dictionary mappings.

5. Dictionary Quiz Game: Create a quiz game where users are presented with definitions or
descriptions, and they have to guess the corresponding word. Use a dictionary to store the ques-
tions and answers, and track the user's score.

6. Student Grade Tracker: Develop a program for teachers to track student grades using dictio-
naries to store student names as keys and their corresponding grades as values. Implement fea-
tures such as adding new grades, calculating averages, and generating reports.

7. Weather Data Analysis: Build a tool for analyzing historical weather data using dictionaries to
store information such as temperature, precipitation, and date. Allow users to query the data for
specific time periods or locations.

8. Dictionary-based Password Generator: Create a password generator that uses a dictionary of
common words and phrases to generate strong, memorable passwords. Users can specify the
length and complexity of the passwords.

9. File Metadata Extractor: Develop a utility that extracts metadata from files (e.g., images,
documents) and stores it in a dictionary. Metadata could include file type, size, creation date,
and author information.

10. Anagram Finder: Write a program that finds anagrams of a given word using a dictionary of
words. Users can input a word, and the program will search the dictionary for all possible ana-
grams.

Chapter 15: Dictionaries Parting Thoughts On Dictionaries

Computer Scripting Techniques with Python © 2024 Pulp Free Press 457

0
0
0
0
1
1
1
1

Self-Test Questions

1. What is a dictionary?

2. How do you create an empty dictionary?

3. How can you initialize a dictionary with key/value pairs?

4. How do you access the value associated with a specific key?

5. What happens if you try to access a key that does not exist in the dictionary?

6. What happens if you insert a value using a pre-existing key?

7. Can a dictionary have duplicate keys? Explain why or why not.

8. What does the dictionary.items() method do?

9. In what natural order are the keys retrieved via the dictionary.keys() method?

10. What two built-in functions can you use to change the ordering of keys retrieved from a dic-
tionary?

References

Python Documentation, Dictionaries: https://docs.python.org/3/tutorial/datastruc-
tures.html#dictionaries

Python C API Documentation: https://docs.python.org/3/c-api/dict.html

ISO 8601-1:2029, iso.org: https://www.iso.org/standard/70907.html

JSON.org: https://www.json.org/json-en.html

CPython Repository, github.com: https://github.com/python/cpython

Parting Thoughts On Dictionaries Chapter 15: Dictionaries

458 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
1
1
1

Notes

	Ch-15: Dictionaries
	1.1 Why Must A Key Be Immutable?
	1.2 Creating And Populating Dictionaries
	1.3 Dictionary Comprehensions
	1.3.1 Parting Thoughts On Dictionary Comprehensions

	2 Processing Dictionaries
	2.1 Operations Supported By Dictionaries
	2.1.1 Dictionary View Objects

	3 Converting Dictionaries To JSON
	3.1 A Few Simple Rules
	3.2 The Rules In Action
	3.3 So, Tell Me Again Why I Need JSON?

	4 Dictionary Use Cases
	5 Parting Thoughts On Dictionaries

