
Computer Scripting Techniques with Python © 2024 Pulp Free Press 497

0
0
0
1
0
0
0
1

00010001

Ch-17: Introduction To Classes & Object-Oriented Programming

Learning Objectives
• State the purpose of classes

• Use UML class diagrams to communicate application design

• Use the class keyword to define classes

• State the purpose of the __new__ and __init__ special methods

• Explain what it means to create an instance of a class

• State the purpose of the __self__ attribute

• State the difference between functions and methods

• Create instance variables

• Define methods using the def keyword

• Call instance methods using dot notation

• Define properties using the @property decorator

• Define property setters

CHAPTER 17
Introduction To Classes

Object-Oriented Programming
&

Chapter 17: Introduction To Classes & Object-Oriented Programming

498 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
1
0
0
0
1

Introduction

Classes are a foundational concept in object-oriented analysis, design, and programming.
Classes allow you to gain a clear mental understanding of how your code is organized and struc-
tured, leading to clean application architectures. Clean application architectures lead to code
that’s easier to manage, maintain, and evolve.

Classes enable you to co-locate data along with the methods required to process that data into
a single, coherent user-defined data type. Designing an application with classes allows you to
think in terms of objects and the interactions between them. This change in thinking helps you to
tame conceptual complexity.

Classes, along with code modules, allow you to tame physical complexity as well. Physical
complexity refers to the number of source code files and other artifacts a project contains. As a
general rule: the bigger the application — the greater its physical complexity.

In this chapter, you will learn how to define and use classes in your programs. Along the way
I will show you how to visualize classes and their relationships between each other with the help
of Unified Modeling Language (UML), which is a standardized modeling language used in soft-
ware engineering to design, model, and document object-oriented software systems. UML pro-
vides a set of graphical notations for representing various system aspects including structure,
behavior, and interaction.

1 Classes 101

In this section, you will learn what classes are, how to define them, and how to use them in
your programs.

1.1 What Is A Class?

In the world of software engineering, the term class has several meanings depending upon the
context in which it appears of which there are three we are concerned with: object-oriented analy-
sis, object-oriented design, and object-oriented programming. I will treat object-oriented analysis
and design (OOA&D) as one context, as the lines between the tasks performed within these two
activities are often blurred.

In the context of object-oriented analysis & design, a class is used to represent the concept or
notion of an entity within a problem domain. There is usually a one-to-one mapping from real-
world objects in the problem domain to classes within the design domain. Following the problem
domain analysis, an initial software design is created which attempts to identify the properties and
methods required by each class. Such a design can be expressed visually using Unified Modeling
Language (UML) class diagrams. I talk more about UML later in the chapter. Note that the activi-
ties referred to here as analysis and design are performed iteratively in an ongoing effort to better
understand the problem domain and refine the design.

In the context of object-oriented programming, a class refers to a programming language con-
struct that enables a programmer to implement in code the conceptual notion of a class as discov-
ered during analysis and design. Python provides the class keyword, which lets you define user-
defined types which serve as templates for the creation of objects within your program. A class

Chapter 17: Introduction To Classes & Object-Oriented Programming

Computer Scripting Techniques with Python © 2024 Pulp Free Press 499

0
0
0
1
0
0
0
1

definition can specify what type of data an object can contain, what type of behavior an object
can support, or both. Usually, it’s both.

1.2 What Is An Object?

A class is used to create one or more objects within your program. A class definition is just
that, a definition. To actually do something with the class you must create an instance of the class.
(You will also hear and see related terms such as object instantiation.) This results in an object of
the class type being instantiated or created in memory. An object is nothing more than an area in
memory that contains the data associated with a particular instance.

1.3 Defining A Class

OK, let’s say you are working on a program that needs to represent the concept of a person
with a few basic attributes like first name, middle name, and last name. Example 17.1 gives the
listing for a Person class.

17.1 person.py
1 """Contains the definition of the Person class."""
2
3 class Person:
4 """Defines a Person class."""
5
6 # This is a class-wide attribute
7 # shared by all Person objects
8 count = 0
9
10 def __new__(cls, *args, **kwargs):
11 """Creates a new Person object."""
12 if __debug__:
13 print('__new__() method called...Person object created!')
14 instance = super().__new__(cls)
15 return instance
16
17
18 def __init__(self, first_name:str='John',
19 middle_name:str='J', last_name:str='Doe')->None:
20 """Initializes Person object with known state."""
21 self.first_name = first_name
22 self.middle_name = middle_name
23 self.last_name = last_name
24 Person.count += 1
25 if __debug__:
26 print(f'__init__() method called...Person object initialized!')
27
28
29 def __str__(self)->str:
30 """Returns a string representation of the object."""
31 return f'{self.first_name} {self.middle_name} {self.last_name}'
32

Referring to example 17.1 — This example contains the definition for a class named Person
in a module named person (i.e., person.py). The class keyword is used on line 3 to define a class
named Person. Note that the class name starts with a capital letter while the module name is in
lower-case. (See PEP 8 — Style Guide for Python Code for naming guidelines.)

Chapter 17: Introduction To Classes & Object-Oriented Programming

500 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
1
0
0
0
1

The Person class consists of one class-wide attribute named count, three special methods
__new__(), __init__(), and __str__(), and three instance attributes self.first_name,
self.middle_name, and self.last_name. Let’s discuss each of these in more detail starting
with the class-wide attribute.

On line 8, I declare a class-wide attribute named count and initialize it to zero. A class-wide
attribute is shared by all instances created by the class. In this context, the term instance is syn-
onymous with object.

On line 10, I have defined a __new__() method. The __new__() method is responsible for
creating an object of type Person in memory. The __new__() method is also referred to as the
constructor. You usually do not need to define a __new__() method in your classes. I have done
so here to illustrate the order of method calls during object construction and initialization.

The definition for the __init__() method begins on line 18. The purpose of the __init__()
method is to initialize the newly-instantiated object into a known state. This is where you put defi-
nitions for any instance attributes required by objects of this type. The first parameter listed in the
__init__() method is self. The parameter name self represents an instance. The self param-
eter is then used to define instance attributes as shown on lines 21 through 23. Note how the
instance attributes are accessed via the parameter name self while the class-wide attribute count
is accessed via the class name Person as shown on line 24. Also, in addition to the self parame-
ter, I declared three additional parameters for the __init__() method: first_name, mid-
dle_name, and last_name, and provided default values for each parameter.

Finally, the definition for the __str__() method begins on line 29. The purpose of the
__str__() method is to return a string representation of the object. Since I am dealing with
objects of type Person, the I’ve coded the __str__() method to return the self.first_name,
self.middle_name, and self.last_name instance attributes.

1.4 Instantiating Objects

The Person class can now be used to create objects. Example 17.2 shows the Person class in
action.

17.2 main.py
1 """Demonstrate object instantiation and attribute access."""
2
3 from person import Person
4
5 def main():
6 p1 = Person()
7 print(f'p1 = {p1} | Object Count: {Person.count}')
8 p2 = Person('Rick', 'W', 'Miller')
9 print(f'p2 = {p2} | Object Count: {Person.count}')
10 p3 = Person()
11 p3.first_name = 'Hannah'
12 p3.middle_name = 'J'
13 p3.last_name = 'Banana'
14 print(f'p3 = {p3} | Object Count: {Person.count}')
15
16
17 if __name__ == '__main__':
18 main()
19

Chapter 17: Introduction To Classes & Object-Oriented Programming

Computer Scripting Techniques with Python © 2024 Pulp Free Press 501

0
0
0
1
0
0
0
1

Referring to example 17.2 — On line 3, I import the Person class from the person module.
On line 6, I create an instance of a person object by calling the Person constructor with no argu-
ments like so: Person(). The call to the Person() constructor returns a reference to the new
object which is assigned to the variable p1. The variable p1 is said to reference or point to a per-
son object. On the next line, I print p1 and the class-wide Person.count value.

On line 8, I create another instance of person only this time I am passing in arguments for the
first_name, middle_name, and last_name parameters. The new object reference is assigned to
the variable p2 and on the following line, I print p2 and the Person.count values to the console.

Finally, on line 10, I instantiate another person object, assign the reference to variable p3, then
use p3 to access and set each of the object’s instance attributes directly. Figure 17-1 shows the
results of running this program.

Referring to figure 17-1 — Creating an instance of a class involves behind-the-scenes calls to
the two special methods __new__() and __init__(). The __new__() method is called first
which creates the object, followed by a call to the __init__() method, which initializes the
newly-created object. You can see above that each call to the Person() constructor results in two
messages being printed to the console — the first from the __new__() method and the second
from the __init__() method.

1.5 To __new__() or Not to __new__()

You generally don’t need to implement the __new__() method except in very special object-
creation scenarios. You can read more about when to implement a __new__() method in the
Python docs: https://docs.python.org/3/reference/datamodel.html#object.__new__

Figure 17-1: Results of Running Example 17.2

Chapter 17: Introduction To Classes & Object-Oriented Programming

502 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
1
0
0
0
1

1.6 Rules To Preserve Your Sanity

I’d like to offer a few rules to follow when defining and using classes. Adhering to this short
list of rules will help to preserve your sanity as your project grows in conceptual and physical
complexity. Several come straight from PEP 8 while the others come from hard lessons learned.

Referring to table 17-1 — The One Class per Module rule helps tame both conceptual and
physical complexity. You should be able to locate a class definition by looking at the module
name. If you define multiple classes in one module, locating a particular class becomes a lot more
challenging. You should follow this rule even for small projects. When you’re actively working
on a project you have a good idea where all your code is located because your project layout is
fresh in your mind. It’s when you step away from your project for a while that you’ll find upon
your return the design and implementation decisions you made several months, weeks, or even
just a few days ago have begun to fade from memory. If you put multiple class definitions in one
module you’ll have to go on a scavenger hunt to find the class you’re looking for. Logical artifact
naming is a powerful organizational tool.

1.7 Enough Rope To Blow Your Leg Clean Off

I have a wonderful little volume on my bookshelf titled: Enough Rope To Shoot Yourself In
The Foot: Rules for C and C++ Programming, by Allen I. Holub. It’s a must read for anyone
learning C or C++ and is absolutely packed with great advice. Essentially what it says is: Just
because a programming language allows you to do something doesn’t mean you should.

Python is a powerful and flexible programming language and like C and C++, you can do
things in Python that can lead to disaster if you’re not fully aware of the consequences. I’m going
to make a slight revision to example 17.2 to illustrate my point.

Rule Explanation

One Class per Module Place class definitions in separate modules. If you have multiple classes in
your application, place each class definition in a dedicated module with
the same name as the class. (i.e., The person.py module contains the
Person class definition.)

Access Class-Wide Attributes via
Class Name

Class-wide attributes are shared by all instances of the class. Prefix the
attribute name with the class name. (i.e., Person.count)

Access Instance Attributes via Ref-
erence Name

Instance attribute values are unique to each object and can be accessed via
the reference name. (i.e., p1.first_name)

Instantiate Objects in Known State Implement an __init__() method to ensure objects are initialized into a
known state. Provide default parameter values so the class constructor can
be called without arguments.

Observe Good Module Naming
Conventions

Module names should be lower-case with underscores separating each
word of a multi-word module name. (a.k.a., snake_case)

Observe Good Class Naming Con-
ventions

Class names should begin with an upper-case letter with the first letter of
each subsequent word in multi-word class names capitalized. (a.k.a., Pas-
calCase)

Table 17-1: Rules To Preserve Your Sanity When Defining and Using Classes

Chapter 17: Introduction To Classes & Object-Oriented Programming

Computer Scripting Techniques with Python © 2024 Pulp Free Press 503

0
0
0
1
0
0
0
1

17.3 main.py (rev 1)
1 """Demonstrate object instantiation and attribute access."""
2
3 from person import Person
4
5 def main():
6 p1 = Person()
7 print(f'p1 = {p1} | Object Count: {p1.count}')
8 p2 = Person('Rick', 'W', 'Miller')
9 print(f'p2 = {p2} | Object Count: {p2.count}')
10 p3 = Person()
11 p3.first_name = 'Hannah'
12 p3.middle_name = 'J'
13 p3.last_name = 'Banana'
14 print(f'p3 = {p3} | Object Count: {p3.count}')
15
16 print('*' * 40)
17
18 # A rookie mistake
19 p1.count = 100
20 print(f'p1 = {p1} | Object Count: {p1.count}')
21 print(f'p2 = {p2} | Object Count: {p2.count}')
22 print(f'p3 = {p3} | Object Count: {p3.count}')
23
24 if __name__ == '__main__':
25 main()
26

Referring to example 17.3 — On lines 7, 9, and 14, I am now reading the class-wide count
attribute via the instance references p1, p2, and p3 respectively. Everything seems fine. Reading
class-wide attributes in this fashion works, but only because the attribute in question is not found
in the object scope, so Python moves up a level to the class scope where it finds the count attri-
bute and reads its value. Then, on line 19, I make a common rookie mistake. I attempt to assign a
value to the class-wide count attribute via an instance reference. I’m not doing what I think I’m
doing. Instead, a new instance attribute named count is created for p1. Figure 17-2 shows the
results of running this program.

Figure 17-2: Results of Running Example 17.3

Chapter 17: Introduction To Classes & Object-Oriented Programming

504 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
1
0
0
0
1

Referring to figure 17-2 — Reading class-wide attributes via instance references provide the
naive expected behavior, however, you will run into difficulty when you attempt to assign a value
to a class-wide attribute via an instance reference. Python allows you to create new instance attri-
butes on-the-fly. (And new class attributes as well.) The ability to create new attributes is a pow-
erful language feature but, as the saying goes, “With great power comes great responsibility”.
This leads to the following Pro Tip: Read and write class-wide attributes via the class name.

Pro Tip: Read and write class-wide attributes via the class name

1.8 Properties vs. Attributes

Python instance attributes are meant to be accessed directly. This may seem quite strange if
you come from languages like Java, C#, or C++ that support private fields and the notion of data
encapsulation. There’s no such thing as private data or data encapsulation in Python. All class and
instance attributes are publicly accessible, however, there is a convention in Python, which is dis-
cussed in PEP 8, that instructs you to prefix an underscore '_' to attribute names to serve as a sig-
nal to clients not to access the attribute directly because it is an implementation detail and may
change in the future. Let’s add an age property to the Person class. To do this, I’ll add a date of
birth (self._dob) instance attribute and a property named birthday, along with several other
properties for convenience. Example 17.4 gives the revised Person class.

17.4 person.py (rev 1)
1 """Contains the definition of the Person class."""
2
3 from datetime import date
4 from datetime import datetime
5
6 class Person:
7 """Defines a Person class."""
8
9 # This is a class-wide attribute
10 # shared by all Person objects
11 # Define and initialize these first
12 count = 0
13
14 # Define the __init__() method next
15 def __init__(self, first_name:str='John',
16 middle_name:str='J', last_name:str='Doe',
17 date_of_birth:datetime=datetime.now())->None:
18 """Initializes Person object with known state."""
19 self.first_name = first_name
20 self.middle_name = middle_name
21 self.last_name = last_name
22 # Underscore warns clients not to access this attribute
23 self._dob = date_of_birth
24 Person.count += 1
25 if __debug__:
26 print(f'__init__() method called...Person object initialized!')
27
28 # Define properties next
29 # Group property definition with
30 # corresponding setters and deleters (if any)
31 @property
32 def birthday(self)->datetime:

Chapter 17: Introduction To Classes & Object-Oriented Programming

Computer Scripting Techniques with Python © 2024 Pulp Free Press 505

0
0
0
1
0
0
0
1

33 """Return person's birthday."""
34 return self._dob
35
36 @birthday.setter
37 def birthday(self, value:datetime)->None:
38 """Set person's birthday."""
39 self._dob = value
40
41 @property
42 def full_name(self)->str:
43 """Return person's full name."""
44 return f'{self.first_name} {self.middle_name} {self.last_name}'
45
46 @property
47 def age(self)->int:
48 """Return person's age in years."""
49 today = datetime.now().date()
50 b_day = date(today.year, self._dob.month, self._dob.day)
51 adjustment = (1 if today < b_day else 0)
52 return (today.year - self._dob.year) - adjustment
53
54 @property
55 def full_name_and_age(self)->str:
56 """Return person's full name and age."""
57 return f'{self.full_name} {self.age}'
58
59 def __str__(self)->str:
60 """Returns a string representation of the object."""
61 return self.full_name_and_age
62

Referring to example 17.4 — I would first like to draw your attention to the overall code lay-
out. There’s a doc comment on the first line of the module followed by the import statements fol-
lowed by the class definition. Within the body of the class definition the doc comment comes
first followed by any class-wide attribute definitions, followed by the __init__() method which
contains instance attribute definitions and any necessary initialization code. Next come property
definitions, ordinary method definitions (if any) and lastly, the remaining special method defini-
tions. This is just my personal preference.

Again from the top, on lines 3 and 4, I’m importing the date and datetime classes. To the
__init__() method, on line 23, I have added a new instance attribute self._dob. On line 17, I
have also added another __init__() method parameter named date_of_birth. Note that the
self._dob instance attribute begins with a leading underscore. This signals to developers using
this class not to access this attribute directly, but, like I said earlier, this is only a suggestion — a
professional agreement. The message being that if you do access this attribute directly, your code
may break at some point in the future if the developer of the Person class decides to change the
name of that attribute or remove it altogether. This isn’t really a problem if you are the only one
working on the code, but in a team environment, or if you ever intend to release a public package
on PyPi.org, then it becomes a serious issue.

OK, continuing on to line 31, I use the @property decorator to declare a read-only property
named birthday. It returns the self._dob attribute. On line 36, I declare a birthday setter prop-
erty with the @birthday.setter decorator. Note that the @birthday.setter property declares a
parameter named value, which is assigned to the self._dob attribute.

Chapter 17: Introduction To Classes & Object-Oriented Programming

506 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
1
0
0
0
1

Lastly, I define three more properties on lines 42, 47, and 54 respectively named full_name,
age, and full_name_and_age. The __str__() special method simply returns the
self.full_name_and_age property. OK, let’s put this new version of the Person class through its
paces. Example 17.5 lists a revised main.py module.

17.5 main.py (rev 2)
1 """Demonstrate object instantiation and attribute access."""
2
3 from person import Person
4 from datetime import datetime
5
6 def main():
7 p1 = Person()
8 print(f'p1 = {p1} | Object Count: {Person.count}')
9 p2 = Person('Rick', 'W', 'Miller', datetime(1986, 4, 2))
10 print(f'p2.age = {p2.age}')
11 print(f'p2 = {p2} | Object Count: {Person.count}')
12 p3 = Person()
13 p3.first_name = 'Hannah'
14 p3.middle_name = 'J'
15 p3.last_name = 'Banana'
16 p3.birthday = datetime(1994, 3, 14)
17 print(f'p3 = {p3} | Object Count: {Person.count}')
18 print(f'p3\'s Full Name and Age: {p3.full_name_and_age}')
19
20
21 if __name__ == '__main__':
22 main()
23

Referring to example 17.5 — On line 4, I’m importing the datetime class and use it on lines
9 and 16 to create datetime objects for birthdays. Something very important to notice is that
although property definitions look like method definitions, they are used like ordinary attributes
as shown on lines 10, 16, and 18. Figure 17-3 shows the results of running this program.

1.9 Stopping The Debug Statements

You can see from figure 17-3 that I run the main.py module like so:
python3 main.py

Figure 17-3: Results of Running Example 17.5

Chapter 17: Introduction To Classes & Object-Oriented Programming Object-Oriented Analysis, Design, And Programming

Computer Scripting Techniques with Python © 2024 Pulp Free Press 507

0
0
0
1
0
0
0
1

This sets the __debug__ global variable to True. To set the __debug__ global variable to
False, add the -O switch (capital letter O) to the python3 command like so:
python3 -O main.py

Quick Review

In the world of software engineering, the term class has several meanings depending upon the
context in which it appears of which there are three we are concerned with here: object-oriented
analysis, object-oriented design, and object-oriented programming. In the context of object-ori-
ented analysis & design, a class is used to represent the concept or notion of an entity within a
problem domain. In the context of object-oriented programming, a class refers to a programming
language construct that enables a programmer to implement in code the conceptual notion of a
class as discovered during analysis and design. Python provides the class keyword, which lets
you define user-defined types which serve as templates for the creation of objects within your pro-
gram.

A class is used to create one or more objects within your program. Use the class keyword to
define a class in Python.

Instantiate an object by calling the class constructor, which is the name of the class followed
by open-close parentheses (i.e., Person()).

The __new__() method is responsible for object creation and is referred to as the constructor.
The __init__() method is responsible for object initialization. The __new__() method is
optional as Python provides a default version which works fine in most situations.

Class-wide attributes are shared by all instances. Access class-wide attributes via the class
name. Instance attributes are unique to each object. Access instance attributes via object refer-
ences.

Python classes have no concept of encapsulation. Preceding an instance attribute with an
underscore '_' indicates the attribute should not be accessed directly because it is an implementa-
tion detail and may change or be removed at some point in the future.

Create read-only properties with the @property decorator. Add a setter decorator if you need
a read-write property.

Use properties if you need to perform some transformation or calculation on an instance attri-
bute.

2 Object-Oriented Analysis, Design, And Programming

Now that you know how to define a class and use it to create objects, I want to step back and
give you an overview of object-oriented analysis, design, and programming. In this short section I
will only be hitting the highlights. You would normally dive deeper into this topic in a course on
Software Engineering.

In Chapter 2: An Approach To The Art Of Programming, I introduced you to the three roles
you’re expected to play as a software engineer: Analyst, Architect, and Programmer. Large proj-
ects may have different people performing these roles, each with highly specialized skills. In my
experience, most of the work falls to the individual software engineer who must build competence
and expertise in all three areas.

Object-Oriented Analysis, Design, And Programming Chapter 17: Introduction To Classes & Object-Oriented Programming

508 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
1
0
0
0
1

2.1 Object-Oriented Analysis

The analysis phase of any software development project regardless of size involves studying a
system or process, either existing or planned, for the purpose of capturing functional and non-
functional requirements which can later be translated into a system design.

Object-Oriented Analysis places emphasis on identifying entities that participate in the system
or process being analyzed. An entity can be a human playing some role in the system (i.e., user,
operator, data source, data receiver, etc.) or a concept within the system (i.e., customer, order,
product, employee, student, etc.). Analysis may produce a one-to-one mapping between real-
world objects and software entities modeled within the system.

Activities associated with object-oriented analysis include requirements gathering, object
identification, inter-object relationship identification including associations between objects,
compositional relationships, inheritance relationships, and object behavior identification.

Several different modeling approaches may be used to capture and enhance understanding of
system requirements. These include use-case modeling, which is captured in UML Use-Case dia-
grams, static modeling, which is captured in UML Class diagrams, and dynamic modeling, which
is captured in UML Sequence diagrams.

2.2 Object-Oriented Design

Any software design phase involves defining a system architecture comprised of detailed
design models based on the requirements gathered during analysis.

Object-Oriented Design places an emphasis on adding detail to classes identified during the
analysis phase including attributes, methods, relationships, and interactions. Approaches to
object-oriented design include compositional design, inheritance, or a combination of both. (In
fact, as you’ll learn later, there really is no object-oriented design without inheritance.)

To speed up the design process and enhance overall system reliability, flexibility, and extensi-
bility, experienced software engineers will employ well-known software design principles (i.e.,
Dependency Inversion Principle, Liskov Substitution Principle, and the Open-Closed Principle)
and established software design patterns (i.e. Facade pattern, Model-View-Controller pattern,
Command pattern, etc.). You will learn more about design principles and software design patterns
later in the book.

The detailed design can be expressed in UML Component, Class, Sequence, and State
Machine diagrams.

2.3 Object-Oriented Programming

Object-Oriented Programming entails using a programming language that supports the
object-oriented paradigm to implement the detailed system architecture created during the design
phase. Emphasis is placed on defining classes that bundle data along with the methods that pro-
cess the data. Key concepts besides classes and objects include encapsulation, abstraction, inheri-
tance, and polymorphism.

Some programming languages support OOP concepts better than others. Python, since this is
a book about Python, does not support data encapsulation, which is the notion of limiting access
to an object’s private data. This, however, is usually not a show-stopper if the hands-off signal
given with a preceding underscore is honored.

Chapter 17: Introduction To Classes & Object-Oriented Programming Object-Oriented Analysis, Design, And Programming

Computer Scripting Techniques with Python © 2024 Pulp Free Press 509

0
0
0
1
0
0
0
1

2.4 What’s The Point?

The point of Object-Oriented Analysis, Design, and Programming (OOAD&P) is to produce a
software system or application that not only works and reliably so, but is also easy to comprehend,
maintain, and evolve.

2.4.1 Easy To Comprehend

The system architecture should be easy to understand. A class must have an obvious purpose
and its relationship with other classes within the system must be clear. You should be able to wrap
your head around what each component within the system is doing and how it does it.

If you find yourself struggling to comprehend a system design, or if you’re looking at existing
code and wondering what in the name of everything that’s holy is going on, then the system is
poorly designed or at the very least is suboptimal.

2.4.2 Easy To Maintain

A well-designed system should be easy to maintain. The code base layout should correspond
to architectural components and boundaries. By code base layout I am referring to how the project
is organized. It should be obvious from the system architecture where a particular type of problem
might originate. You should be able to picture in your mind where the class or classes involved
with an application feature reside. (i.e, In what folders, files, and modules.)

A poorly designed system architecture leads to shortcuts. If it’s a pain-in-the-ass to achieve a
design objective then lazy programmers will take shortcuts. This leads to a well-documented phe-
nomenon referred to as Code Rot which should never be allowed to gain a foothold and eradicated
early and with prejudice if it does start to creep into the code base.

2.4.3 Easy To Evolve

A well-designed object-oriented system should easily accommodate new features while main-
taining architectural integrity. Through the use of composition, inheritance, and software design
principles such as the Dependency Inversion Principle, Liskov Substitution Principle, and the
Open-Closed Principle, and a small handful of software design patterns such as the Command
Pattern, the Model-View-Controller Pattern, the Strategy Pattern, the Observer pattern, the Deco-
rator pattern, and the Façade pattern, additional application features should require little if any
modification to existing code. Rather, a high-level abstraction which specifies desired behavior is
extended to implement the desired functionality.

2.5 How Do You Arrive At A Good Design?

Good design evolves incrementally over time. Rarely, if ever, will a developer, or a team of
engineers, start with a complete, perfectly designed application architecture. Modern software
development practices abhor the notion of trying to design everything up front. Of course, you
must have a good idea of what it is you are building but the details of how it will be implemented
can be worked out over time. An experienced software engineer will know when they have
arrived at a point that requires a code reorganization to achieve their design objectives. This code
reorganization activity is referred to as refactoring.

Introduction To Unified Modeling Language (UML) Chapter 17: Introduction To Classes & Object-Oriented Programming

510 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
1
0
0
0
1

How, if you’re a relatively inexperienced developer, can you tell if you need to refactor your
code? I like to describe the feeling like this: You arrive at a point where you have programmed
yourself into a corner from which there is no clean escape except via a path that violates and cor-
rupts the application architecture. At that point you must stop, reevaluate the design, and refactor
the code so that it continues to support desired design objectives. (i.e., Easy to Understand, Easy
to Maintain, and Easy to Evolve.)

Quick Review

Object-Oriented Analysis places emphasis on identifying entities that participate in the system
or process being analyzed. Object-Oriented Design places emphasis on adding detail to classes
identified during the analysis phase including attributes, methods, relationships, and interactions.
Object-Oriented Programming entails using a programming language that supports the object-ori-
ented paradigm to implement the detailed system architecture created during the design phase.

The point of Object-Oriented Analysis, Design, and Programming (OOAD&P) is to produce a
software system or application that is easy to comprehend, maintain, and evolve.

Good design evolves incrementally over time.

3 Introduction To Unified Modeling Language (UML)

Unified Modeling Language (UML) is the de facto standard for expressing the design and
implementation of object-oriented systems. The UML specification defines both a visual lan-
guage which is used to specify and communicate system designs, as well as a MOF-based meta-
model that specifies how software tools create, display, and share UML models. The acronym
MOF stands for Meta Object Facility. You can learn more about UML and MOF at the Object
Modeling Group’s website: https://omg.org

3.1 UML Is Easy To Draw

UML diagram elements are meant to be easy to draw regardless of the tool you are using. I
mostly draw UML diagrams on a white board with a dry erase marker to explain to co-workers or
students what I am thinking. I have drawn UML diagrams on napkins while having coffee with
colleagues, and in my Engineer’s Notebook when I’m having coffee by myself. Over the years, I
have drawn UML diagrams using various diagramming software like Microsoft Visio, Microsoft
PowerPoint, Lucid Charts, and Draw.io. I have used full-blown UML modeling tools to automati-
cally draw UML diagrams from an existing code base. The purpose of drawing a UML diagram is
to visually communicate your design to yourself and to other humans.

3.2 A Little UML Goes A Long Way

A complete treatment of UML is way beyond the scope of this book, however, it will be
extremely helpful to use a small handful of UML diagram elements to provide you with a visual
model of some of the more complex examples you will encounter throughout the remainder of
this book. I will rely mostly upon class diagrams and sequence diagrams.

Chapter 17: Introduction To Classes & Object-Oriented Programming Introduction To Unified Modeling Language (UML)

Computer Scripting Techniques with Python © 2024 Pulp Free Press 511

0
0
0
1
0
0
0
1

3.2.1 Class Diagram

A class diagram contains one or more class elements and shows the relationship between
them. A class is drawn as a rectangle which can optionally contain several inner rectangles to dis-
play class properties, attributes, and methods. Figure 17-4 shows the class diagram for the Person
class defined in example 17.4.

Referring to figure 17-4 — The top box contains the class name. The middle box lists attri-
butes and properties. The plus and minus signs preceding each attribute/property (+, -) indicate
public and private accessibility. As you learned earlier, all attributes, properties, and methods in a
Python class are publicly accessible. Still, it’s nice to be able to look at a picture of the class and
see at a glance which members are considered part of an object’s public interface along with those
that are not. Notice that the class-wide attribute count is underlined which indicates it is a static
(i.e., class-wide) variable.) The bottom box lists the methods.

3.2.1.1 Abbreviated Class Diagram

I drew the Person class above using PowerPoint. Adding attributes and methods is a tedious
process and in most cases these can be omitted, especially in the case where you want to focus on
class relationships. The abbreviated form of the Person class diagram is given in figure 17-5.

Referring to figure 17-5 — I tend to use the abbreviated class form in my class diagrams sim-
ply because it’s super easy to draw on a whiteboard, in a notebook, or with any computer-based
drawing tool you might have.

Figure 17-4: Person Class Diagram Showing Attributes and Methods

Figure 17-5: Abbreviated Person Class Diagram

Introduction To Unified Modeling Language (UML) Chapter 17: Introduction To Classes & Object-Oriented Programming

512 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
1
0
0
0
1

3.2.2 Sequence Diagram

A sequence diagram focuses on a subset of an application architecture or process to illustrate
events, method calls, and data flow between actors and entities. Example 17.5 shows a sequence
diagram for the main.py module and the messages and events related to the variables p1 and p2.

Referring to figure 17-6 — Actors and entities appear at the top of the sequence diagram.
Their order of engagement moves from left-to-right. (At this point you should follow along in the
code while consulting the sequence diagram.) In this diagram, the stick figure represents a UML
actor, which represent a role play by a user or another system that interacts with the program.
Extending down from each entity are lifelines. When the user runs the main.py program, the main
module executes and imports the Person class from the person module. A call is made to the
Person() constructor which returns an object of type Person and assigns the reference to the vari-
able p1. With p1 thus created, an implicit call is made to p1.__str__(), which returns a string
representation of the Person object referenced by p1. Next, the Person.count attribute is
accessed which results in the value 1 being returned. I leave it for you as an exercise to trace the
sequence of calls related to p2. Note: I left p3 out of this diagram in the interest of space.

3.2.2.1 Thoughts On Sequence Diagrams

Sequence diagrams can be extremely tedious to draw manually, especially if you try to repre-
sent too much of the system in one diagram. They are, however, an extremely helpful tool for
clarifying your understanding of what’s happening in the code.

I rarely draw detailed sequence diagrams manually. Instead, I’ll use a comprehensive UML
modeling tool that can read in the source files and automatically generate the diagram. I use the
same approach when I need to create comprehensive class diagrams.

Figure 17-6: Sequence Diagram for main.py Module Given in Example 17.5

Chapter 17: Introduction To Classes & Object-Oriented Programming Methods

Computer Scripting Techniques with Python © 2024 Pulp Free Press 513

0
0
0
1
0
0
0
1

Quick Review

Unified Modeling Language (UML) is used to express the design and implementation of
object-oriented systems. UML defines both a set of visual diagram elements which are used to
communicate the design of an object-oriented system, as well as the specification of a meta-lan-
guage for use by automated UML design tools.

A little UML goes a long way. Two of the most helpful UML diagram types include class and
sequence diagrams. Class diagrams show one or more classes and their relationship to each other.
Sequence diagrams show system events, messages, and data flow between participating actors
and objects.

4 Methods

A method is a function that is defined within a class. You learned about functions in Chapter
12: Modules and Functions, so here I shall focus only on how to define and call methods. Every-
thing you learned about functions with regards to defining parameters, passing in arguments, and
returning values, applies to methods. However, before diving into the meat of this section, I want
to briefly discuss the special methods and properties of the Person class listed in example 17.4.

4.1 Special Methods

As you learned earlier, the Person class defines two special methods: __init__() and
__str__(). The purpose of special methods is to customize object behavior with regards to how
they are used with various language operators. In the case of the person class, I am, at this point at
least, only interested in customizing object initialization and providing a custom string represen-
tation of a person object.

The __init__() method is implicitly called when a person instance is created as shown in the
following code snippet.
p1 = Person()

The __str__() method is implicitly called when a person object is passed as an argument to
the built-in print() function like so:
print(p1)

Note that you are technically not required to implement either of these methods, but it’s con-
sidered best practice to do so. If you do not provide an implementation for the __init__()
method, you would need to write additional code to define instance attributes.

The default implementation of the __str__() method returns information about an object’s
type and memory location. For example, removing the definition of the __str__() method from
the Person class results in the following output when I call print(p1):
<person.Person object at 0x106245390>

If you try this at home the memory location value will most certainly be different, and will be
different for each person object you create, and perhaps even different every time you run the pro-
gram.

Note that special methods are Python’s way of allowing operator overloading, a topic I cover
in greater detail in Chapter 19: Well-Behaved Objects.

Methods Chapter 17: Introduction To Classes & Object-Oriented Programming

514 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
1
0
0
0
1

4.2 Property Definitions

Referring again to the Person class listed in example 17.4 — The property definitions look
suspiciously like method definitions but the @property decorator changes the semantics. By this
I mean you access properties like attributes as opposed to calling them like a method.

4.3 Defining And Calling Methods

A method is defined within the body of a class definition. A method defines at least one
parameter, self, which is a reference to an instance. The parameter name self is strictly a con-
vention. You could use any name, but I recommend sticking with self as all the documentation
and examples on the Internet use self...so...just use self.

The biggest problem you’ll face when starting to create your own classes and methods is for-
getting to add the parameter self to your methods.

OK, to inject some fun into this conversation, I’m going to add the capability to associate Per-
son objects with family relationships. See the relationship graph in figure17-7.

Referring to figure 17-7 — The graph consists of nodes (vertices) represented by circles and
edges, represented by the lines connecting each node. This is a directed graph in that the edges
have an arrow that indicates the direction of the relationship. For example, Kyle is Rick’s child
and Rick is Kyle’s father. I have combined edges in the interest of space and orderliness.

To store a person’s relationships I will add a dictionary to the Person class along with several
methods to add and show a person’s relationships. Example 17.6 gives the modified Person class.

17.6 person.py
1 """Contains the definition of the Person class."""
2
3 from datetime import date
4 from datetime import datetime
5
6 class Person:
7 """Defines a Person class."""
8

Figure 17-7: Family Relationship Graph

Chapter 17: Introduction To Classes & Object-Oriented Programming Methods

Computer Scripting Techniques with Python © 2024 Pulp Free Press 515

0
0
0
1
0
0
0
1

9 # This is a class-wide attribute
10 # shared by all Person objects
11 # Define and initialize these first
12 count = 0
13
14 # Define the __init__() method next
15 def __init__(self, first_name:str='John',
16 middle_name:str='J', last_name:str='Doe',
17 date_of_birth:datetime=datetime.now())->None:
18 """Initializes Person object with known state."""
19 self.first_name = first_name
20 self.middle_name = middle_name
21 self.last_name = last_name
22 # Underscore warns clients not to access this attribute
23 self._dob = date_of_birth
24 self._relationships = {}
25 Person.count += 1
26
27
28 # Define properties next
29 # Group property definition with
30 # corresponding setters and deleters (if any)
31 @property
32 def birthday(self)->datetime:
33 """Return person's birthday."""
34 return self._dob
35
36
37 @birthday.setter
38 def birthday(self, value:datetime)->None:
39 """Set person's birthday."""
40 self._dob = value
41
42
43 @property
44 def full_name(self)->str:
45 """Return person's full name."""
46 return f'{self.first_name} {self.middle_name} {self.last_name}'
47
48
49 @property
50 def age(self)->int:
51 """Return person's age in years."""
52 today = datetime.now().date()
53 b_day = date(today.year, self._dob.month, self._dob.day)
54 adjustment = (1 if today < b_day else 0)
55 return (today.year - self._dob.year) - adjustment
56
57
58 @property
59 def full_name_and_age(self)->str:
60 """Return person's full name and age."""
61 return f'{self.full_name} {self.age}'
62
63
64 def __str__(self)->str:
65 """Returns a string representation of the object."""
66 return self.full_name_and_age
67

Methods Chapter 17: Introduction To Classes & Object-Oriented Programming

516 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
1
0
0
0
1

68
69 def add_relationship(self, p:any, relationship:str)->None:
70 """Add relationship to p."""
71 if relationship not in self._relationships:
72 self._relationships[relationship] = []
73
74 match(relationship):
75 case 'parent' | 'father' | 'mother' \
76 | 'sibling' | 'brother' | 'sister' \
77 | 'child' | 'daughter' | 'son' \
78 | 'aunt' | 'uncle' | 'niece' | 'nephew' \
79 | 'grand aunt':
80 if isinstance(p, Person):
81 if p not in self._relationships[relationship]:
82 self._relationships[relationship].append(p)
83 case _:
84 self._relationships[relationship].append(p)
85
86
87 def show_relationships(self)->None:
88 """Show all relationships."""
89 for key in self._relationships:
90 for entry in self._relationships[key]:
91 print(f'{self.full_name} --> {key} : {entry}')
92

Referring to example 17.6 — Starting on line 24 in the body of the __init__() method, I
have added an instance attribute named self._relationships, which is a dictionary that will
contain a Person object’s relationships. I have also added two new methods: add_relation-
ship(), which starts on line 69, and show_relationships(), which starts on line 87.

The add_relationship() method takes two arguments: p, which is an object who’s relation-
ship will be added to the current person, and relationship, which is a string that defines the rela-
tionship. Essentially, the add_relationship() method works like this: The relationship
string serves as a key in the dictionary. Objects that participate in that relationship are stored in a
list. On line 71, I check to see if the relationship key exists in the dictionary, and if not, I create an
empty list using that key. The match statement starting on line 74 checks the relationship
string. If it matches one of the family relationships listed in the first case I then check to ensure
it’s a Person object using the isinstance() function. If it is, I then check to see if it is already in
the relationship list, and if not, I append it to the list. The default case simply adds p to the indi-
cated relationship with no questions asked.

The show_relationships() method begins on line 87. It simply iterates over the self._rela-
tionships dictionary and prints the relationships to the console.

Example 17.7 shows these methods in action.
17.7 main.py

1 """Demonstrate method calling."""
2
3 from person import Person
4 from datetime import datetime
5
6 def main():
7 # Create Person Objects
8 kyle = Person('Kyle', 'V', 'Miller', datetime(2016, 8, 12))
9 rick = Person('Rick', 'W', 'Miller', datetime(1986, 4, 2))
10 coralie = Person('Coralie', 'S', 'Miller', datetime(1989, 10, 6))
11 katrina = Person('Katrina', 'M', 'Powell', datetime(1990, 12, 3))

Chapter 17: Introduction To Classes & Object-Oriented Programming Methods

Computer Scripting Techniques with Python © 2024 Pulp Free Press 517

0
0
0
1
0
0
0
1

12 lois = Person('Lois', 'M', 'Miller', datetime(1966, 10, 20))
13 # Print Person Info
14 print(f'{kyle} | Object Count: {Person.count}')
15 print(f'{rick} | Object Count: {Person.count}')
16 print(f'{coralie} | Object Count: {Person.count}')
17 print(f'{katrina} | Object Count: {Person.count}')
18 print(f'{lois} | Object Count: {Person.count}')
19 # Add Relationships
20 kyle.add_relationship(rick, 'parent')
21 kyle.add_relationship(rick, 'father')
22 rick.add_relationship(kyle, 'child')
23 rick.add_relationship(kyle, 'son')
24 kyle.add_relationship(coralie, 'parent')
25 kyle.add_relationship(coralie, 'mother')
26 coralie.add_relationship(kyle, 'child')
27 coralie.add_relationship(kyle, 'son')
28 kyle.add_relationship(katrina, 'aunt')
29 katrina.add_relationship(kyle, 'nephew')
30 kyle.add_relationship(lois, 'grand aunt')
31 lois.add_relationship(kyle, 'grand nephew')
32
33 # Show Relationships
34 kyle.show_relationships()
35 rick.show_relationships()
36 coralie.show_relationships()
37 katrina.show_relationships()
38 lois.show_relationships()
39
40
41 if __name__ == '__main__':
42 main()
43

Referring to example 17.7 — The first thing I do on lines 8 through 12 is create five Person
objects: kyle, rick, coralie, katrina, and lois. On lines 14 through 18, I print the each Person
object’s information. Next, I add the relationships as shown in figure 17-7, then print the relation-
ships for each Person object to the console. Figure 17-8 shows the results of running this program.

Figure 17-8: Results of Running Example 17.7

Methods Chapter 17: Introduction To Classes & Object-Oriented Programming

518 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
1
0
0
0
1

Again referring to example 17.7 — Note that a method is called on a particular object using
the dot '.' operator and the open and close parentheses '()' Arguments passed to the method
appear between the parentheses (i.e., kyle.add_relationship(rick, 'parent')). Within the
method definition, the name self represents that instance. The terms object and instance are syn-
onymous. Every instance of Person, or to say it another way, every Person object, contains its
own copy of its instance attributes. When you call a method via a reference to an object (i.e, kyle)
the method (i.e, add_reference(rick, 'parent')) works on that object’s data.

I like to project myself into the code when I am programming. When you are defining a class,
you can think of yourself as being "in the object" and the name self represents the object you are
in and thus any instance attributes you define belong to that object’s data.

Quick Review

Methods are functions that are defined within a class. All methods have at least on parameter
named self, which represents an instance of the class. Everything you learned about functions
regarding parameter definition, argument passing, and returning values, applies to methods as
well.

Use the dot '.' operator and the open and closed parentheses '()' to call a method via an
object reference.

Summary

In the world of software engineering, the term class has several meanings depending upon the
context in which it appears of which there are three we are concerned with here: object-oriented
analysis, object-oriented design, and object-oriented programming. In the context of object-ori-
ented analysis & design, a class is used to represent the concept or notion of an entity within a
problem domain. In the context of object-oriented programming, a class refers to a programming
language construct that enables a programmer to implement in code the conceptual notion of a
class as discovered during analysis and design. Python provides the class keyword, which lets
you define user-defined types which serve as templates for the creation of objects within your pro-
gram.

A class is used to create one or more objects within your program. Use the class keyword to
define a class in Python.

Instantiate an object by calling the class constructor, which is the name of the class followed
by open-close parentheses (i.e., Person()).

The __new__() method is responsible for object creation and is referred to as the constructor.
The __init__() method is responsible for object initialization. The __new__() method is
optional as Python provides a default version which works fine in most situations.

Class-wide attributes are shared by all instances. Access class-wide attributes via the class
name. Instance attributes are unique to each object. Access instance attributes via object refer-
ences.

Python classes have no concept of encapsulation. Preceding an instance attribute with an
underscore '_' indicates the attribute should not be accessed directly because it is an implementa-
tion detail and may change or be removed at some point in the future.

Chapter 17: Introduction To Classes & Object-Oriented Programming Methods

Computer Scripting Techniques with Python © 2024 Pulp Free Press 519

0
0
0
1
0
0
0
1

Create read-only properties with the @property decorator. Add a setter decorator if you need
a read-write property.

Use properties if you need to perform some transformation or calculation on an instance attri-
bute.

Object-Oriented Analysis places emphasis on identifying entities that participate in the system
or process being analyzed. Object-Oriented Design places emphasis on adding detail to classes
identified during the analysis phase including attributes, methods, relationships, and interactions.
Object-Oriented Programming entails using a programming language that supports the object-ori-
ented paradigm to implement the detailed system architecture created during the design phase.

The point of Object-Oriented Analysis, Design, and Programming (OOAD&P) is to produce a
software system or application that is easy to comprehend, maintain, and evolve.

Good design evolves incrementally over time.
Unified Modeling Language (UML) is used to express the design and implementation of

object-oriented systems. UML defines both a set of visual diagram elements which are used to
communicate the design of an object-oriented system, as well as the specification of a meta-lan-
guage for use by automated UML design tools.

A little UML goes a long way. Two of the most helpful UML diagram types include class and
sequence diagrams. Class diagrams show one or more classes and their relationship to each other.
Sequence diagrams show system events, messages, and data flow between participating actors
and objects.

Methods are functions that are defined within a class. All methods have at least on parameter
named self, which represents an instance of the class. Everything you learned about functions
regarding parameter definition, argument passing, and returning values, applies to methods as
well.

Use the dot '.' operator and the open and closed parentheses '()' to call a method via an
object reference.

Skill-Building Exercises

1. SOLID Design Principles: Coined by Robert C. Martin, SOLID is a mnemonic for five soft-
ware design principles. Research the five design principles represented by SOLID. Write a brief
description of each and state how each principle contributes to understandable, flexible, and
maintainable code.

2. History of Object-Oriented Programming: Research the history of object-oriented program-
ming with an eye towards answering the following questions: What were the motivating factors
in the development of object-oriented analysis, design, and programming techniques? What
was the first object-oriented programming language? Who were the key players in the develop-
ment of object-oriented programming languages and techniques and what role did they play?

3. Unified Modeling Language: Dive deeper into the purpose and use of the Unified Modeling
Language. You can start by visiting the UML website: https://www.uml.org. List the different
types of UML diagrams and their purpose. What’s the relationship between UML and SYSML?

Methods Chapter 17: Introduction To Classes & Object-Oriented Programming

520 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
1
0
0
0
1

4. Python Support For Object-Oriented Programming: How does Python compare to other
programming languages that support object-oriented programming?

5. Python Data Model: Dive deeper into the Python data model: https://docs.python.org/3/refer-
ence/datamodel.html.

6. Properties Vs. Attributes: Dive deeper into properties defined with the @property decorator
and instance attributes. Write some code to test what happens when you define a property with
the same name as an instance attribute?

7. Data Classes: Research Python data classes. What special feature do data classes support?
When do you think it would be appropriate to use data classes in a program?

8. Python Special Methods. The __new()__, __init__(), and __str__() defined in the Person
class are examples of Python special methods. Create a list of all Python special methods and
briefly describe each method’s purpose.

9. UML Modeling Tools: Research UML modeling tools. Find tools that let’s you generate
class and sequence diagrams from an existing code base. Write a brief paper summarizing your
experience and impressions of each tool.

10. The Python __dict__ Special Property: Research the __dict__ property. Explain in your
own words it’s purpose and use.

Suggested Projects

1. Home Inventory Program: Write a program that lets you keep track of the items in your
home. Your program should allow users to create multiple inventories, add items to an inven-
tory, delete items from an inventory, list the different inventories, select an inventory, and list
the items contained within the selected inventory. Provide a console-based menu with which to
interact with the application. Save inventory data to a file in JSON format. Your final program
should consist of at least three source files, one of which must be main.py, which will be how
you run the program, one class must be focused on providing the user interface, and the third
implements the primary application features.

2. Library Management System: Write a program that allows users to manage library assets.
First, conduct an initial analysis and design to identify entities that will interact with the system,
the types of operations they need to perform, and what types of assets will be included in the
collection. Implement a proof-of-concept that tracks books by their location. Use the Library of
Congress numbering system. Allow users to enter books into the system and list books and their
location.

3. Sales Tracker: Write a program that would allow a manager to track an employee’s sales. The
program should allow the manager to add employees and associate a sale, including items and

Chapter 17: Introduction To Classes & Object-Oriented Programming Methods

Computer Scripting Techniques with Python © 2024 Pulp Free Press 521

0
0
0
1
0
0
0
1

amount, to an employee. The program must be able to read and write sales data to disk in JSON
format.

4. Engine Simulation: Write a basic engine simulation program that models an engine from sev-
eral different parts including a water pump, fuel pump, oxygen sensor, and temperature sensor.
Each component part has an attribute named enabled that can be set to true or false. An engine
will have a check_engine(), start(), and stop() methods. The check_engine() method should
check the status of each engine part and return true if all parts are functioning properly, other-
wise it should return false. The engine start() method must call the check_engine() method and
if all attached parts are working properly, the engine state can be changed to running.

5. Contact List: Write a simple program that allows users to add contacts to a list and save the
contact list to file in JSON format. Provide a console-based menu-driven user interface that lets
users add, list, search for, display details, and delete contacts. Use the Person class presented in
this chapter as a starting point and modify it as necessary to represent a contact with phone
number, email, and home address.

Self-Test Questions

1. What keyword is used to define a class?

2. What’s the difference between instance attributes and class attributes?

3. How should class attributes be accessed? What happens if you assign a value to a class attribute
via an instance variable?

4. What’s the difference between a function and a method?

5. What’s the purpose of the self parameter?

6. What’s the purpose of the __new__() and __init__() special methods?

7. How are instance attributes meant to be accessed?

8. You are reading some source code you found in an interesting project on GitHub and you see an
instance attribute name that begins with a leading underscore. What does this mean?

9. What’s the purpose of the @property decorator? What’s the difference between properties and
attributes?

10. How do you define a property setter?

Methods Chapter 17: Introduction To Classes & Object-Oriented Programming

522 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
1
0
0
0
1

References

The Python Data Model, https://docs.python.org/3/reference/datamodel.html

Python Classes, https://docs.python.org/3/tutorial/classes.html

PEP 8 — Style Guide for Python Code, https://peps.python.org/pep-0008/

UML Guide, Object Management Group, https://www.omg.org

UML Specification 2.5.1, https://www.omg.org/spec/UML/2.5.1/About-UML

Extreme Programming, http://www.extremeprogramming.org

Enough Rope To Shoot Yourself In The Foot: Rules for C and C++ Programming, Allen I.
Holub, McGraw-Hill, New York, ISBN: 0-07-029689-8, Via Internet Archive: https://
archive.org/details/enoughropetoshoo0000holu

Notes

	Ch-17: Introduction To Classes & Object-Oriented Programming
	1.1 What Is A Class?
	1.2 What Is An Object?
	1.3 Defining A Class
	1.4 Instantiating Objects
	1.5 To __new__() or Not to __new__()
	1.6 Rules To Preserve Your Sanity
	1.7 Enough Rope To Blow Your Leg Clean Off
	1.8 Properties vs. Attributes
	1.9 Stopping The Debug Statements
	2 Object-Oriented Analysis, Design, And Programming
	2.1 Object-Oriented Analysis
	2.2 Object-Oriented Design
	2.3 Object-Oriented Programming
	2.4 What’s The Point?
	2.4.1 Easy To Comprehend
	2.4.2 Easy To Maintain
	2.4.3 Easy To Evolve

	2.5 How Do You Arrive At A Good Design?

	3 Introduction To Unified Modeling Language (UML)
	3.1 UML Is Easy To Draw
	3.2 A Little UML Goes A Long Way
	3.2.1 Class Diagram
	3.2.1.1 Abbreviated Class Diagram

	3.2.2 Sequence Diagram
	3.2.2.1 Thoughts On Sequence Diagrams

	4 Methods
	4.1 Special Methods
	4.2 Property Definitions
	4.3 Defining And Calling Methods

