
Computer Scripting Techniques with Python © 2024 Pulp Free Press 91

0
0
0
0
0
0
1
1

Ch-3: Small Victories: Simple Python Programs

Learning Objectives
• List and describe the minimum development tools required to create Python programs
• Launch the Python interpreter in Interactive Mode
• Execute Python code in the REPL
• Execute a Python program from the command line
• Execute a Python program with Visual Studio Code
• Explain the differences between Python modules and packages
• Explain how the '+' operator behaves when applied to mixed types
• List and describe fundamental Python data types
• Use Python’s print() and input() functions to perform console I/O operations
• Demonstrate your ability to perform type conversions on string and numeric types
• Explain the difference between syntax errors and runtime exceptions
• Use the try statement and the except clause to properly handle runtime exceptions
• Explain how Python modules and packages are loaded and executed
• List and describe the contents of the Python Standard Library
• Import and use standard library packages in your programs
• Install third-party packages with pip or pip3

00000011
CHAPTER 3

Small Victories:
Simple Python Programs



Chapter 3: Small Victories: Simple Python Programs

92 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
1
1

Introduction

This chapter is all about small victories. Small victories give you the reassurance you so des-
perately need when taking your first tentative steps toward becoming a software developer. Small 
victories is about the planets beginning to move into alignment. Small victories is about your 
knowledge buckets beginning to fill. Small victories is all about the amazing feeling you get when 
you write and execute your first Python program. It’s a great feeling!

You will learn a lot in this chapter. First, you learn how to enter and run short programs in the 
Python interactive interpreter or Read, Evaluate, Print, Loop (REPL) environment. From there 
you’ll create Python source files with a text editor and run them from the command line. Finally, 
I’ll show you how to run and debug Python projects using Visual Studio Code.

Along the way you’ll learn about the Python Standard Library, built-in functions, fundamental 
data types, and program structure and formatting. I’ll show you how to perform console input and 
output (I/O) with the print() and input() functions. You’ll learn proper identifier naming tech-
niques and how to convert string values to numeric values and back again. 

In this chapter you’ll be using the Python interpreter, a text editor, and Visual Studio Code. If 
you haven’t yet set up your baseline development environment I recommend you return to Chap-
ter 1: Part I Preliminaries: Baseline Development Environment, and do so now. Also, I’ll be con-
ducting most of the operations in this chapter via a terminal. Be sure to write down the commands 
I use in your engineer’s notebook.

The only tools you really need to create and run Python programs are a simple text editor and 
the Python interpreter, but you’ll soon grow to appreciate an Integrated Development Environ-
ment like Visual Studio Code with its wide selection of plugins that provide helpful, convenient 
features. You can also interact directly with the Python interpreter running in interactive mode, 
also referred to as the Read, Evaluate, Print, Loop (REPL), which is a great way to learn about 
and experiment with fundamental Python concepts. So, let’s start there.

1 Python Interpreter Interactive Mode (REPL)

To run the Python REPL, launch a terminal and type either python or python3 depending on 
whether you’re running Windows (python) or macOS & Linux (python3). This launches the 
Python interpreter in Interactive Mode. Note: Windows users can run the Python interpreter in 
either a Command Prompt, Windows PowerShell, or Git Bash terminal. So, pick a terminal and 
launch the interpreter. Your terminal output should look similar to figure 3-1.

Referring to figure 3-1 — I’m running Python 3.10.8. Your version may be different and that’s 
OK. The REPL prompt '>>>' indicates it’s ready for commands. Let’s start with some simple 
arithmetic. 

1.1 The Addition ‘+’ Operator

Refer to figure 3-2 to see the results of entering the following commands. Enter 2 + 2 and hit 
return. Notice how the REPL evaluated the expression and output the value 4 on the next line. 
The plus sign is referred to as the addition operator. The addition operator takes two operands, 
adds them together, and returns a result. In the case of 2 + 2 the addition operator is adding two 



Chapter 3: Small Victories: Simple Python Programs

Computer Scripting Techniques with Python © 2024 Pulp Free Press 93

0
0
0
0
0
0
1
1

numeric types. Now enter 2.5 + 2.5. The result is what you’d expect. Now, enter '2.5' + 
'2.5' and note the result. In this case you applied the addition operator to two string operands, 
which results in the concatenation of the two strings together. Concatenation is a ten-dollar word 
that means to join together. The result of the concatenation operation is a new string consisting of 
the concatenated values.

Python strings can be enclosed in single quotes 'string' or double quotes "string". Repeat 
the previous expression with double quotes like so: "2.5" + "2.5". The result is returned in sin-
gle quotes. 

Single-quoted strings are the same as double-quoted strings. When you define a string within 
a Python program the string is referred to as a string literal. The same concept applies to numeric 
values that appear within your program. The expression 2.5 + 2.5 is using numeric literals. The 
expression '2.5' + '2.5' is using string literals. When using string literals in your programs it’s 
good practice to pick either single-quoted strings or double-quoted strings and be consistent. 

Pro Tip: Be consistent in your use of either single-quoted or double-quoted string literals. 

I will use single-quoted strings for string literals going forward. Adopting a consistent string 
literal rule will make your programs easier to read, understand, and fix when something goes 
wrong. Something always goes wrong when you’re just starting out!

Figure 3-1: Running Python REPL (python3) on macOS in iTerm2

Figure 3-2: Applying the Addition Operator to Numbers and Strings



Chapter 3: Small Victories: Simple Python Programs

94 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
1
1

1.2 Variables

Enter the following command into the REPL: message = 'Hello World!' You’ve just 
defined a variable named message. A variable is a named location in memory that contains a 
value. In other words, the name message points to somewhere in memory that holds the string 
value 'Hello World!'. To be even more precise, message points to the start of the string value or 
its first character. (I dive deeper into Python code execution in Chapter 5: Computers, Programs, 
and Algorithms.)You can now use the message variable anywhere you can use a string literal as 
shown in figure 3-3.

Referring to figure 3-3 — Note first that the variable message is defined. On the next line 
message is entered at the REPL prompt, which results in the output 'Hello World!'. On the last 
line, I use Python’s built-in print() function to print the value of the message variable. Note the 
difference between the two outputs. The first output 'Hello World!' indicates that message is a 
string object. Printing message with the print() function just prints the characters without the 
quotes. If you wanted the single quotes to be part of the string you would have to define the string 
literal like so '\'Hello World!\'' as shown in figure 3-4.

Figure 3-3: Defining and Using a Variable in the REPL

Figure 3-4: Using Embedded Quotes in a String Literal - Use the Escape Character ‘\’



Chapter 3: Small Victories: Simple Python Programs

Computer Scripting Techniques with Python © 2024 Pulp Free Press 95

0
0
0
0
0
0
1
1

Referring to figure 3-4 — The string literal assigned to the variable message contains embed-
ded single quotes. The backslash character '\' represents the escape character. Together, the 
backslash character followed by the single-quote character '\'' represents an escape sequence. 
The escaped single-quote characters are now part of the string literal "'Hello World!'" and is 
printed that way when the message variable is entered into the REPL. The print() function 
prints the string 'Hello World!'.

1.3 Type Conversion

The '+' operator can add two numbers or concatenate two strings. What about mixing things 
up? Nope, that won’t work. You’ll need to pick a side, so to speak. By that I mean you’ll need to 
decide what operation you want to perform, addition or concatenation, and either convert the 
strings to numbers or the numbers to strings as shown in figure 3-5.

Referring to figure 3-5 — Trying to apply the '+' operator to mixed types results in an error 
with a helpful hint. Since there’s a string in the mix the Python interpreter assumes you’re trying 
to concatenate it with the number and suggests you convert the number to a string. To do so use 
the built-in str() function as shown on the next line. If instead you intended to perform addition, 
you’ll need to convert the string to a number, and since the string is '1.5', I’ve used the built-in 
float() function. Note that the string you’re trying to convert to a number should parse to either 
a valid integer or float or you’ll get an error.

Type conversion operations like the ones shown here happen frequently in Python code. Num-
bers entered via the console are read as strings and must be converted to their proper numeric type 
before use. Numbers must be converted to strings before being used in string concatenation oper-
ations. You’ll see plenty more type conversion examples as you progress through the book.

1.4 Exiting The Python Interpreter

To exit the interactive Python interpreter do one of the following:
• On macOS and Linux type Control-D, exit(), or quit()
• On Windows type Control-Z + Return, exit() or quit()

Figure 3-5: Converting Types Before Applying '+' Operator



Run Python Programs From The Command Line Chapter 3: Small Victories: Simple Python Programs

96 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
1
1

1.5 Final Thoughts On The REPL

Using the Python interpreter in interactive mode is nice when you want to quickly run small 
snippets of code, but becomes cumbersome when you want to run larger and more sophisticated 
programs. So, I’ll not spend any more time on it here. We have bigger fish to fry. I’ll revisit the 
REPL in Chapter 5: Computers, Programs, and Algorithms, when I dive deeper into how Python 
loads and runs code. 

Quick Review

The term Read, Evaluate, Print, Loop (REPL) refers to the Python interpreter running in inter-
active mode. The interpreter reads an expression from the >>> prompt, evaluates the expression, 
and prints the results. The interpreter then returns to the >>> prompt and awaits further instruc-
tions, completing the loop. 

When strings and numbers appear in programs they are referred to as literals. Choose single 
or double quotes to represent string literals in your programs and be consistent.

The '+' operator takes two arguments. If the arguments are strings it performs concatenation. 
If the arguments are numbers it performs addition. When applying the addition operator to mixed 
types you must decide which operation to perform and either convert the strings to numbers or 
convert the numbers to strings. 

2 Run Python Programs From The Command Line

The Python REPL is helpful for experimenting with small snippets of code during your early 
forays into the language, but it quickly becomes tedious and ill suited for larger, more complex 
programs. Instead, put Python code into files called modules and run the files with the Python 
interpreter. Let’s start with the universally accepted first program all budding programmers write 
— Hello World! Example 3.1 gives the code listing.

3.1 hello_world.py
1 print('Hello World!')

Referring to example 3.1 — The hello_world.py file contains one line of code that simply 
prints the string 'Hello World!' to the console. The .py file suffix indicates it’s a Python source 
code file. OK, what do you do with it? First, using your preferred text editor, create the file named 
hello_world.py and enter the line of code shown above. Figure 3-6 shows how the editing session 
looks in Sublime Text.

Figure 3-6: Creating hello_world.py with Sublime Text



Chapter 3: Small Victories: Simple Python Programs Run Python Programs From The Command Line

Computer Scripting Techniques with Python © 2024 Pulp Free Press 97

0
0
0
0
0
0
1
1

Referring to figure 3-6 — Note that you DO NOT enter the line number shown in the example 
code and above. Sublime Text will automatically show line numbers. I add line numbers in exam-
ple code to make it easy to reference a line when discussing the code. So, just enter the code 
print('Hello World!'). Now, before you save the file, think about where you want your 
Python source files to reside. In chapter 1, I recommended you create a folder in your home direc-
tory called dev. I recommend you create a subdirectory in the dev directory named helloworld, all 
lowercase. So, the path to that directory will be ~/dev/helloworld. Save the hello_world.py file 
there. Now, open a terminal and navigate to the ~/dev/helloworld directory. 

To run the program, Windows users type python hello_world.py and UNIX/Linux users 
type: python3 hello_world.py The results of running example 3.1 on Windows and macOS 
are shown in figure 3-7.

2.1 Fixing Common Errors

If you managed to create and run the hello_world.py file without any problems, you’re lucky. 
If you made a mistake or two then you’re in good company. Common mistakes you might make, 
even with the simple hello_world.py example, include:

• Forgetting to surround the string Hello World! with single or double quotes
• Starting a string with a quote but omitting the ending quote
• Starting a string with one type of quote mark and ending with a different type
• Misspelling the print() method name
• Capitalizing the first letter of the print() method name
• Using a file suffix other than .py (File will still run, but it’s bad practice because 
development tools will use file suffixes to determine programming language.)

If you do get an error when you try to run a program fix the first error first, as I advised in 
chapter 2. OK, let’s take a look at a longer program whose source code is listed in example 3.2.

3.2 basic_io.py
1 message = 'Hello World!'
2 print(message.lower())

Figure 3-7: Running hello_world.py on macOS (iTerm2 top) and Windows (Git Bash bottom)



Run Python Programs From The Command Line Chapter 3: Small Victories: Simple Python Programs

98 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
1
1

3 print(message.capitalize())
4 print(message.upper())
5 print(message.center(40, '-'))
6 print('*' * 60)
7 name = input('What\'s your name? ')
8 message = message.removesuffix('World!')
9 print(message + ' ' + name + '!')

Referring to example 3.2 — This program begins by creating a variable named message and 
assigning it the string Hello World!. On lines 2 through 5, I call various methods on the message 
string as it is passed to the print() method. For example, on line 2 I call the lower() method, 
which changes the string to lowercase. On the next line, I call the capitalize() method, which 
capitalizes the first character of the string. On line 4, I call the upper() method, which changes 
the message string to uppercase. On line 5, I call the center() method. This centers the string 
within the alloted space specified by the numeric argument, which in this case is 40, and pads 
empty space with the '-' character. Line 6 may look strange. It illustrates a shortcut to print 
repeated characters to the console. In this case, I’m printing the asterisk character sixty times 
across the screen. On line 7, I use the built-in input() function to ask the user for input, which I 
assign to the name variable. I then make a call to the string removesuffix() method passing in 
the string 'World!' to remove from the message string. This results in a new string with the 
value 'Hello ' being assigned to the message variable. Finally, on line 9, I concatenate the string 
variables message and name, and print() the string to the console. 

Enter the code from example 3.2 into your text editor and save the file. Like the hel-
lo_world.py program shown earlier, create a subdirectory in your ~/dev folder. I will create a sub-
directory named basicio, so the full path to the file will be ~/dev/basicio/basic_io.py. Open a 
terminal, navigate to the ~/dev/basicio directory, and run the program. Figure 3-8 shows the 
results of running example 3.2.

Referring to figure 3-8 — You can trace the effects of the code on the program’s output. The 
input() function pauses execution while it waits until a user enters a string at the console. The 
important thing to note about the input() function is that it returns a string, which may need to 
be parsed and converted before use, depending on your needs. Also, I’m not doing any error 
checking on the input, so there’s no telling what a user may actually enter. 

Now, let’s inject some faults into the code to see what errors look like. We’ll do this in mea-
sured doses. Start by deleting the closing parenthesis from the end of the first print() statement. 
Save the file and run the program. The results should look similar to figure 3-9.

Figure 3-8: Results of Running basic_io.py



Chapter 3: Small Victories: Simple Python Programs Run Python Programs From The Command Line

Computer Scripting Techniques with Python © 2024 Pulp Free Press 99

0
0
0
0
0
0
1
1

Referring to figure 3-9 — Python produces some fairly clear error messages. It gives you the 
full path to the file that produced the error and the line number on which the error occurred, and 
finally an error message. This one was easy, let’s add several more. Figure 3-10 shows my Sub-
lime Text editor with a handful of errors introduced to the basic_io.py file. 

Referring to figure 3-10 — This is another good argument for using a decent text editor or 
IDE. Sublime Text has highlighted a few of the lines containing errors. Some errors are easier to 
spot than others. For example, it’s easy to see the mismatched quote types on line 1, but the capi-
talized letter 'C' on line 3 will not produce an error until the program actually runs. Well, to be 
more specific, a Python program loads before it runs. Syntax errors are checked during loading. 
Other types of errors called exceptions aren’t detected until runtime. So, I’m going to fix the mis-
matched quote and reload the program. The results are shown in figure 3-11.

Referring to figure 3-11 — OK, we see there’s an error on line 7, but it says it’s an untermina-
ted string literal. This is something you may encounter fairly often if you use escape sequences in 

Figure 3-9: Syntax Error for Missing Closing Parenthesis

Figure 3-10: Multiple Errors Indicated in Sublime Text

Figure 3-11: A Rather More Cryptic Error Message



Run Python Programs From The Command Line Chapter 3: Small Victories: Simple Python Programs

100 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
1
1

strings and forget which slash character to use, a backslash '\' or a forward slash '/'. The cor-
rect escape character is the backslash. 

Notice, however, that it skipped over the error on line 3. That’s because Python is just trying 
to load, parse, and compile the program. It’s not yet trying to run the program. (I’ll dive deeper 
into how Python loads and executes programs in Chapter 5: Computers, Programs, and Algo-
rithms.) The types of errors Python is catching during the program load and parse phase are Syn-
tax Errors. You can see this in the error output of figure 3-11. If something goes wrong during 
program execution it will produce an Exception. We’ll see this happen here in a second after we 
fix these syntax errors. 

OK, change the forward slash back to a backslash, save the file and run the program once 
again. It should now catch the missing closing parenthesis on line 2. Go ahead and fix that error 
and repeat the save and run cycle. This is actually a good demonstration of what you’ll be doing 
during development as discussed in chapter 2. You’ll write some code, try to run it, fix any mis-
takes, and repeat the cycle until everything works fine. 

Another common mistake you’ll make is to forget to save the file when you make a change, 
and you’ll wonder why none of your edits are taking effect when you run the program. That leads 
to some good advice: Remember to save your changes whenever you edit a source file. 

Pro Tip: Remember to save your changes to a source file before running the program. If you’re editing a 
source file and you don’t see your changes take effect, you’re either editing the wrong copy of the file 
or not saving your changes between edits. 

Alright, that seems pretty funny for a Pro Tip, but believe me, even professional software 
engineers make these mistakes. 

Continuing on, save your changes and run the program. You will now see a different kind of 
error as shown in figure 3-12.

Referring to figure 3-12 — Now Python is trying to run the program and when it attempts to 
call the Capitalize() method on a string object it throws an exception. An exception is a error that 
occurs during program runtime. Compare this error output with the one shown in figure 3-11 
above. You notice here the message hello world! printed to the console, so the program was 
running up to the point it threw the exception. You can tell it’s an exception because of the text 
Traceback (most recent call last): This is a fairly easy exception to decipher. Later in the 
book you’ll see examples of exceptions that will really have you scratching your head. No wor-
ries. I’ll show you how to read them.

Figure 3-12: AttributeError Exception Thrown on Line 3



Chapter 3: Small Victories: Simple Python Programs Run Python Projects With Visual Studio Code

Computer Scripting Techniques with Python © 2024 Pulp Free Press 101

0
0
0
0
0
0
1
1

OK, change the Capitalize() method back to capitalize() with a lowercase 'c' and 
rerun the program. It should now run to the point where it asks you to input your name. Enter your 
name and hit return. Now it throws another exception as shown in figure 3-13.

Referring to figure 3-13 — You’ll make this mistake fairly frequently especially when you’re 
just starting out writing your own code and it can be rather cryptic to figure out what’s going on. 
Python is trying to apply the unary '+' operator to a string object. I haven’t discussed the unary 
'+' operator yet but you apply it to a single numeric operand like so: +3. OK, fix that final error 
and run the program. See the last line of example 3.2 to see what’s missing. Let’s take a look now 
at how to run Python programs in Visual Studio Code

Quick Review

To run Python programs from the command line, first create a source code file that contains 
the Python code you want to execute and save it in a project directory. Next, launch a terminal, 
navigate to the project directory, and run the program using either the python or python3 com-
mand depending on your operating system.

Don’t be discouraged if your source code contains errors. Even professional programmers 
make coding mistakes. The first errors the Python interpreter will detect as it attempts to load a 
module are syntax errors. You’ll need to fix all the syntax errors before a module will successfully 
load. The second type of errors the Python interpreter detects are runtime exceptions. These are 
errors that occur during program execution. A good text editor, like Sublime Text, provide a 
visual indicator when it detects Python syntax errors. 

Like programming in general, the only way you get good at fixing errors is to write code, 
make mistakes, and figure out how to fix those mistakes. 

3 Run Python Projects With Visual Studio Code

Launch Visual Studio Code. If you set it up as I suggested in chapter 1, then your start-up 
screen will look similar to figure 3-14.

Figure 3-13: TypeError Exception Thrown on Line 9



Run Python Projects With Visual Studio Code Chapter 3: Small Victories: Simple Python Programs

102 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
1
1

Referring to figure 3-14 — Starting from the left — the little blue circles on the icons along 
the left hand side indicate updates are available for extensions and for Visual Studio Code itself. 
In the EXPLORER column there are two blue buttons labeled Open Folder and Clone Reposi-
tory. You’ll learn more about Git, GitHub, and repositories in Part II: Foundations, Chapters 7 & 
8, so you can ignore the Clone Repository button for now. Moving right, the first Get Started 
panel guides you on Getting started with Python development. The next Get Started panel guides 
you on Getting started with Jupyter Notebooks. You can ignore Jupyter Notebooks as I will not be 
using them in this book.

3.1 Update Visual Studio Code And Extensions

The first thing I always do when I launch Code is to install all pending updates to Code itself 
and to installed extensions. To update Code, click on the gear cog icon in the lower left corner of 
the screen and restart to install the update. You may see a new panel with Release Notes related to 
the update you just installed. I recommend reviewing them to see what’s new as shown in figure 
3-15.

Referring to figure 3-15 — Notice the update indicator on the extensions icon is still lit up. 
Reload Visual Studio Code once again to install the updated extensions. When you’ve completed 
the updates you’ll be ready to proceed. This is something you’ll go through fairly regularly with 
Visual Studio Code. It’s good practice to keep everything up-to-date. 

Figure 3-14: Launching Visual Studio Code with Recommended Python Plugins Installed



Chapter 3: Small Victories: Simple Python Programs Run Python Projects With Visual Studio Code

Computer Scripting Techniques with Python © 2024 Pulp Free Press 103

0
0
0
0
0
0
1
1

3.2 Think Project Folder

You really need to select a directory in which to store your programming projects. You need to 
start organized, get organized, and stay organized. Yes, I’m in lecture mode. Not knowing where 
you saved your project files will mess with your head. By now you know I recommend creating a 
~/dev folder in your home directory and creating subdirectories under it to store individual proj-
ects. Of course you can exceed my recommendations. As the number of programming projects 
you work on increases, the need for structure and organization will become painfully obvious. It’s 
easier to stay organized if you start organized than it is to get organized from an absolute disorga-
nized disaster. 

Pro Tip: Start organized and stay organized. Organize your source code into project folders.

If you followed along in the previous section and created the ~/dev/basicio/basic_io.py file, 
then open that project folder with Visual Studio Code. You should first see a warning message as 
shown figure 3-16.

Referring to figure 3-16 — Unless you have a compelling reason not to do so, click Yes, I 
trust the authors. Your Visual Studio Code window will look similar to figure 3-17.

Figure 3-15: Release Notes Appear After Update



Run Python Projects With Visual Studio Code Chapter 3: Small Victories: Simple Python Programs

104 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
1
1

Referring to figure 3-17 — You can see in the EXPLORER panel the BASICIO project folder 
expanded to show the files it contains. In this case there’s only one file basic_io.py. Double-click 
the file to open it. You should see something similar to figure 3-18. 

Referring to figure 3-18 — I have increased the font size to make it easier on the eyes. 

Figure 3-16: Trust Authors Warning when Opening Folder with Code

Figure 3-17: Visual Studio Code Listing Files in the basicio Project Folder



Chapter 3: Small Victories: Simple Python Programs Run Python Projects With Visual Studio Code

Computer Scripting Techniques with Python © 2024 Pulp Free Press 105

0
0
0
0
0
0
1
1

3.3 Running A Program

You have several ways to run a Python program when using Code. You can run it directly in 
Visual Studio Code by selecting the file and clicking the triangle in the upper-right corner of the 
window. This will launch an embedded terminal within Code as shown in figure 3-19.

Figure 3-18: Editing the basic_io.py File

Figure 3-19: Running a Program in Code’s Embedded Terminal



Run Python Projects With Visual Studio Code Chapter 3: Small Victories: Simple Python Programs

106 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
1
1

Referring to figure 3-19 — When you click the triangle, Code will run the selected file in an 
embedded terminal within the Visual Studio Code Workbench, which is Microsoft’s name for the 
arrangement of Visual Studio Code’s user interface panels. Refer to the VS Code documentation 
for a more detailed treatment: https://code.visualstudio.com/docs/getstarted/userinterface

Note: I’ve never experienced a problem launching and using Visual Studio Code’s embedded 
terminal when running it directly on macOS, Linux, or Windows. However, when I ran Code in a 
Parallels virtual machine, which I do for the macOS examples in this book, I did have a problem 
which I resolved by launching Code from the command line like so:

code --disable-gpu

You can also create an alias in your .bash_profile or .bashrc like so:

alias code='code --disable-gpu'

You can avoid these issues altogether by simply running your Python programs the second 
way, which is just running them in a separate terminal. This is what I do because while using 
Code’s embedded terminal does come in handy sometimes, I prefer to devote as much workbench 
space to the editor as possible as shown in figure 3-20.

Referring to figure 3-20 — In reality, I have multiple monitors and I’ll run my text editor or 
IDE on one screen and have the terminal running on another screen. When you’re programming, 
you will also usually have a browser open to reference documentation or Google results, so you’ll 
have multiple windows open simultaneously. I find one monitor too restricting, two is better, three 
or more is ideal. How you code and run your programs is largely a matter of personal taste.

Figure 3-20: Coding in One Window and Running The Program in External Terminal

https://code.visualstudio.com/docs/getstarted/userinterface


Chapter 3: Small Victories: Simple Python Programs Run Python Projects With Visual Studio Code

Computer Scripting Techniques with Python © 2024 Pulp Free Press 107

0
0
0
0
0
0
1
1

3.4 Launch Git-Bash in Code’s Embedded Terminal

This is for Microsoft Windows users. When you run Visual Studio Code in Windows, the 
embedded terminal is set to launch the command prompt (cmd.exe). I recommend you set the 
default profile to run Git-Bash. Here’s how to do it. Launch Visual Studio Code and enter Ctrl-
Shift-P and in the search box start typing Select Default Profile. You’ll see Terminal: Select 
Default Profile come up. Click it to display a list of terminal profiles as shown in figure 3-21.

Referring to figure 3-21 — Select the Git Bash terminal profile, then from the Terminal menu 
select New Terminal and ensure it launches Git Bash. If not, you may need to restart Code. Fig-
ure 3-22 shows Git Bash running in VS Code’s embedded terminal.

Referring to figure 3-22 — Click the triangle to run the program. OK, I still recommend run-
ning programs in a separate terminal. Visual Studio Code has plenty of nice features even without 
the embedded terminal. 

Figure 3-21: Select Git Bash as the Default Terminal Profile

Figure 3-22: Git Bash Running in Visual Studio Code’s Embedded Terminal



Run Python Projects With Visual Studio Code Chapter 3: Small Victories: Simple Python Programs

108 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
1
1

3.5 Debugging Programs In Visual Studio Code

Still in the ~/dev/basicio folder with basic_io.py open in an editor, click the little v-shaped 
icon to the right of the run triangle and select Debug Python File. Notice your Visual Studio 
Code workbench changes as shown in figure 3-23.

Referring to figure 3-23 — A debugger enables you to step through your code to help pinpoint 
problems. To stop somewhere in your code you need to set a breakpoint. To do this, click to the 
left of a line number in the editor panel as shown in figure 3-24.

Figure 3-23: Visual Studio Code in Debug Mode

Figure 3-24: Breakpoints Set and Debug Session Active



Chapter 3: Small Victories: Simple Python Programs Type Conversion And Error handling

Computer Scripting Techniques with Python © 2024 Pulp Free Press 109

0
0
0
0
0
0
1
1

Referring to figure 3-24 — I set several breakpoints as indicated by the red dots next to the 
line numbers. I then restarted the debug session to start at the top. Notice the special variables 
section of the RUN AND DEBUG panel is now populated. (Don’t worry if you don’t understand 
what you see in the special variables section right now. You will by the time you finish this book.) 
To interact with the debugger use the control strip located in the upper center of the workbench. 
You can Continue, Step Over, Step Into, Step Out, Restart, and Stop the session. Take time now to 
familiarize yourself with the debugger. For more information I recommend you consult the Mic-
rosoft Visual Studio Code documentation. https://code.visualstudio.com/docs/editor/debugging

Quick Review

Organize projects into folders and open the folders with Visual Studio Code. The code exam-
ples in this chapter are extremely simple but soon I’ll introduce you to a formal project structure 
to apply to all of your programming projects. 

You can run programs in Visual Studio Code’s embedded terminal, which is convenient, but I 
recommend running programs in a separate terminal. If you’re using Visual Studio Code in Mic-
rosoft Windows, set the default terminal profile to Git Bash.

If you have trouble with the embedded terminal on macOS (or any platform) try launching 
Visual Studio Code from the command line with the GPU disabled like so:
code --disable-gpu

Use Visual Studio Code’s debug mode when you need to troubleshoot programs. Set break-
points to signal to the debugger where to stop during code execution to allow for deeper fault 
analysis.

4 Type Conversion And Error handling

You saw in example 3.2 how the input() function is used to get console input from the user. 
The input() function takes a string argument, which is used to provide a prompt to the user, and 
returns a string containing what the user typed on the command line. You may need to convert the 
string into a different type, say, a numeric value, before using it in your program. Example 3.3 
lists the code for a program that attempts to calculate the sum of two numbers entered via the con-
sole.

3.3 calc_sums.py
1 """Demonstrates String to Number Conversions"""
2
3 def main():
4 # Read number strings from console
5 num1_string = input('Enter first number: ')
6 num2_string = input('Enter second number: ')
7 try:
8 # Convert number strings to integers
9 num1 = int(num1_string)
10 num2 = int(num2_string)
11 # Add the numbers
12 sum = num1 + num2
13 # Print results using formatted string
14 print(f'The sum of {num1} and {num2} = {sum}')
15 except Exception as e:

https://code.visualstudio.com/docs/editor/debugging


Type Conversion And Error handling Chapter 3: Small Victories: Simple Python Programs

110 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
1
1

16 print(f'Problem converting strings to integers: {e}')
17
18
19 if __name__ == '__main__':
20 main()

Referring to example 3.3 — First, I want to explain this example’s overall organization. At the 
top there’s a documentation string comment or, just simply, a docstring. A docstring begins and 
ends with three double quotes. Docstrings are used to help automatically generate meaningful 
documentation for your projects. You’ll learn how to effectively employ docstrings and generate 
project documentation later in the book.

Next, on line 3, a method named main() is defined with the def keyword. The body of the 
main() method begins on line 4, which is indented four spaces from the beginning of the method 
definition and ends on line 17. Line 4 contains a comment, which starts with the pound or hashtag 
'#' character. Everything past the hashtag character on that line is ignored by the interpreter. The 
comment here is important because it’s describing the intention of the code on line 5 and 6, which 
is to read string input from the console. What could possibly go wrong? 

The rest of the main() function’s code executes in the body of a try statement which begins on 
line 7. Anytime you do something in code that could possibly throw an exception you want to 
place that code in a try clause, which in this case includes all the code from lines 8 through 14. If 
the string-to-integer conversions on line 9 and 10 go wrong, the Python interpreter throws an 
exception and the remainder of the code within the try clause following the line that threw the 
exception is skipped and will not execute. It is the job of the except clause to catch the exception 
and do something meaningful with it so your code behaves predictably. In this example, the 
except clause will handle every type of exception that is thrown because it’s looking for an Excep-
tion object, which is the base type of all exceptions. In this example, if an exception is thrown, the 
except clause catches it and prints a polite message to the console along with the original excep-
tion. 

Pro Tip: Place code that may throw an exception in the body of a try clause and handle the exception 
with a except clause.

If all goes well (The pathetic lament of a software engineer), the strings entered by the user 
will convert to integers with the built-in int() function and the sum of the two values will be cal-
culated and printed to the console. Note that this example uses formatted strings, also referred to 
as 'f' strings. The string used as an argument to the print() function begins with an 'f' and 
variables are placed in curly braces "{ }" within the string. If you used string concatenation 
instead of formatted strings, you would have to convert the numeric variables to strings using the 
str() function as shown earlier in this chapter. 

Finally, on line 19, an if statement checks the __name__ property of the calc_sums.py module 
and compares it to the string '__main__' using the equality operator '=='. If the calc_sums.py 
file is executed directly by the python interpreter then its module __name__ property will be set to 
'__main__' and the main() method will execute. You will frequently encounter this pattern, or 
idiomatic usage, represented by lines 19 and 20. I will use it throughout this book to create a main 
entry point for complex Python applications. 



Chapter 3: Small Victories: Simple Python Programs Type Conversion And Error handling

Computer Scripting Techniques with Python © 2024 Pulp Free Press 111

0
0
0
0
0
0
1
1

OK, to run this program, create the source file with your favorite text editor or IDE, and run it 
with either python or python3, depending on your operating system. Figure 3-25 shows the 
results of running this program.

Referring to figure 3-25 — This shows the results of running calc_sums.py with inputs '22' 
and '44'. Try with different signed values like '-33' and '+2433'. Next, use decimal values and 
see the results of throwing an exception. I’ll leave it as an exercise for you to make the program 
work with integers and floats.

4.1 How A Module Executes

Referring again to example 3.3 — As you saw earlier, when you run a module with the Python 
interpreter, it loads the module and performs a line-by-line syntax check. Upon passing, the inter-
preter then evaluates and executes each line of the module. Code that starts along the left-most 
side, in other words, code that is not indented, is evaluated, processed, and/or executed when the 
module is loaded. So, beginning at the top of the file, the docstring is evaluated and stored along 
with other docstrings found in the module. Next, the function definition of main() is evaluated 
and stored along with other function definitions that may be in the module. Finally, the if state-
ment executes. If the module was executed directly by the Python interpreter then the main() 
function is called and runs as you see in figure 3-25. If instead the module was imported into 
another module, you’d see nothing happen until it explicitly called the main() function. 

Note the difference between a function’s definition and its execution. The main() function’s 
definition starts with the def keyword on line 3 of example 3.3. The main() function does not 
execute until it is called in the body of the if statement. 

Quick Review

Use the Python Standard Library built-in input() function to read a line of string input from 
the console. It takes a string argument that sets the prompt and returns a string value that may 
need to be converted into a different type depending on the needs of your program. 

Any code that may throw an exception should be placed in the body of a try clause. This 
includes type conversion operations such as converting string values read from the console and 
converting them into numeric values. There’s always the possibility a user will enter a string that 
does not represent a valid numeric value and will fail the conversion. Use an except clause to 
gracefully handle exceptions. 

The __name__ property of a module directly executed by the Python interpreter is set to the 
string value '__main__'. The idiomatic expression:

Figure 3-25: Results of Running Example 3.3 with Inputs '22’ and '44'



Importing Modules And Installing Packages Chapter 3: Small Victories: Simple Python Programs

112 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
1
1

if __name__ == '__main__':
main()

...checks the value of the module’s __name__ property and if it equals '__main__' it calls the 
main() method. 

5 Importing Modules And Installing Packages

So far in this chapter the examples have relied upon built-in functions to get things done. To 
write more serious programs, you’ll need more help. The Python Standard Library comes with an 
assortment of modules you can import into your programs when you need extra muscle. However, 
these, too, will only get you so far. Many times you’ll need to install one or more third-party 
packages to gain the necessary functionality. This holds especially true for performing certain 
types of date calculations. Example 3.4 gives a program that calculates a user’s age given their 
birthday.

3.4 calculate_age.py
1 """Calculates user's age based on their birthday."""
2
3 # Import the date and datetime classes from datetime module
4 from datetime import date, datetime
5 # Import the relativedelta function from the third-party
6 # dateutil.relativedelta package
7 from dateutil.relativedelta import relativedelta
8
9 def main():
10 # Input birthday string in the format mm/dd/yyy
11 date_string = input('Enter Date of Birth (mm/dd/yyyy): ')
12 try:
13 # Split the input string along '/' boundaries
14 # This results in a list of strings
15 parsed_date_list = date_string.split('/')
16 # Convert month string to int
17 month = int(parsed_date_list[0])
18 # convert day string to int
19 day = int(parsed_date_list[1])
20 #convert year string to int
21 year = int(parsed_date_list[2])
22 # Create the birthdate date object
23 birthdate = date(year=year, month=month, day=day)
24 # Print birthday to console
25 print(f'Your birthday is {birthdate}')
26 age = relativedelta(datetime.now(), birthdate)
27 print(f'You are {age.years} years old.')
28 print(f'Your absolute age is: {age}')
29
30 except Exception as e:
31 print(f'Problem calculating date: {e}')
32
33 if __name__ == '__main__':
34 main()

Referring to example 3.4 — On line 4, I import the date and datetime classes from the date-
time module. The datetime module is part of the Python Standard Library. While the Python date 
and datetime classes provide a lot of date manipulation features, it’s rather clunky to calculate the 



Chapter 3: Small Victories: Simple Python Programs Importing Modules And Installing Packages

Computer Scripting Techniques with Python © 2024 Pulp Free Press 113

0
0
0
0
0
0
1
1

years between two dates, so this program requires the extra muscle provided by a third-party 
package named python-dateutil: https://dateutil.readthedocs.io/en/stable/

Before you can use the python-dateutil package in a program you’ll need to install it using 
either pip or pip3 from the command line like so:

pip3 install python-dateutil

You should now be able to run the program like so:

python3 calculate_age.py

On line 11, the program prompts the user to enter their date of birth in mm/dd/yyyy format. 
This is returned as a string to the date_string variable. From this point forward things could go 
horribly wrong, so the bulk of the code is located in the body of the try clause. The comments 
explain step-by-step what’s happening in the code. The date_string is split into a list of strings 
by calling the string.split() method with a argument of '/' which tells the method to split the 
string along forward-slash boundaries. This results in a list of three strings. You’ll learn more 
about lists in Chapter 14: Lists and Tuples, but in a nutshell, the parsed_date_list variable 
points to a list object that represents the result of the string.split() operation. To access the individ-
ual strings within the list use integer indices inside square brackets. For example, parsed_-
date_list[0] points to the first string, or the string that represents the month number mm; 
parsed_date_list[1] points to the second string, or the string that represents the day number 
dd; and finally, parsed_date_list[2] points to the third string, or the string that represents the year 
number yyyy. Each of these strings must be converted into integers before they can be used to cre-
ate a date object. 

On line 25, the birthdate variable is printed to the console. On line 26, I use the relative-
delta() method to calculate the difference between the current date datetime.now() and the 
birthdate. On line 27, I print age.years to the console. On line 28, I print the complete age 
(relativedelta) object to the console. Figure 3-26 shows the results of running this program.

Referring to figure 3-26 — If you were ever curious just how old you actually are this is a 
good way to find out. 

Quick Review

The Python Standard Library contains modules you can import into your programs when you 
need specialized functionality. When the standard library falls short, you can install third-party 
packages with pip or pip3 and import them into your program.

Figure 3-26: Results of Running calculate_age.py 

https://dateutil.readthedocs.io/en/stable/


Python Standard Library And Python Package Index Chapter 3: Small Victories: Simple Python Programs

114 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
1
1

6 Python Standard Library And Python Package Index

I’ve used several elements from the Python Standard Library to implement the examples in 
this chapter. These include the built-in functions input(), int(), print(), and str(), the built-
in types integer (Numeric), str (Text Sequence), list (Sequence), and the built-in Exception class. I 
used string.split() from the Common string operations module to split a string into a list of 
substrings. Finally, I imported the datetime module to perform date manipulations. This rep-
resents only a small fraction of the functionality supplied by the standard library.

From the Python Package Index (PyPI) I installed the python-dateutil package and used the 
relativedelta() function to compute the difference between two date objects. 

You’ll find it helpful to browse the Python Standard Library and get a feel for what’s included 
and available with your Python installation. 

Pro Tip: Familiarize yourself with the Python Standard Library and the Python Package Index (PyPI) 

A common mistake beginners make when learning modern programming languages that come 
with extensive supporting libraries or frameworks is to try to reinvent the wheel without first 
searching to see if what they are trying to do is already done for them by some component in a 
supporting library or framework. So learning how to program in Python is part learning Python 
and part learning what’s in the Python Standard Library and the Python Package Index (PyPI). 

Summary

The term Read, Evaluate, Print, Loop (REPL) refers to the Python interpreter running in 
interactive mode. The interpreter reads an expression from the >>> prompt, evaluates the expres-
sion, and prints the results. The interpreter then returns to the >>> prompt and awaits further 
instructions, completing the loop. 

When strings and numbers appear in programs they are referred to as literals. Use single or 
double quotes to represent string literals in your programs and be consistent.

The '+' operator takes two arguments. If the arguments are strings it performs concatenation. 
If the arguments are numbers it performs addition. When applying the '+' operator to mixed 
types you must decide which operation to perform and either convert the strings to numbers or 
convert the numbers to strings. 

To run Python programs from the command line, first create a source code file that contains 
the Python code you want to execute and save it in a project directory. Next, launch a terminal, 
navigate to the project directory, and run the program using either the python or python3 com-
mand depending on your operating system.

Don’t be discouraged if your source code contains errors. Even professional programmers 
make coding mistakes. The first errors the Python interpreter will detect as it attempts to load a 
module are syntax errors. You’ll need to fix all the syntax errors before a module will successfully 
load. The second type of errors the Python interpreter detects are runtime exceptions. These are 
errors that occur during program execution. A good text editor, like Sublime Text, provide a 
visual indicator when it detects Python syntax errors. 

https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/stdtypes.html
https://docs.python.org/3/library/stdtypes.html
https://docs.python.org/3/library/exceptions.html
https://docs.python.org/3/library/string.html
https://docs.python.org/3/library/datetime.html
https://pypi.org
https://pypi.org/project/python-dateutil/


Chapter 3: Small Victories: Simple Python Programs Python Standard Library And Python Package Index

Computer Scripting Techniques with Python © 2024 Pulp Free Press 115

0
0
0
0
0
0
1
1

Like programming in general, the only way you get good at fixing errors is to write code, 
make mistakes, and figure out how to fix those mistakes. 

Organize projects into folders and open the folders with Visual Studio Code. The code exam-
ples in this chapter are extremely simple but soon I’ll introduce you to a formal project structure 
to apply to all of your programming projects. 

You can run programs in Visual Studio Code’s embedded terminal, which is convenient, but I 
recommend running programs in a separate terminal. If you’re using Visual Studio Code in Mic-
rosoft Windows, set the default terminal profile to Git Bash.

If you have trouble with the embedded terminal on macOS (or any platform) try launching 
Visual Studio Code from the command line with the GPU disabled like so:
code --disable-gpu

Use Visual Studio Code’s debug mode when you need to troubleshoot programs. Set break-
points to signal to the debugger where to stop during code execution to allow for deeper fault 
analysis.

Use the Python Standard Library built-in input() function to read a line of string input from 
the console. It takes a string argument that sets the prompt and returns a string value that may 
need to be converted into a different type depending on the needs of your program. 

Any code that may throw an exception should be placed in a try clause. This includes type 
conversion operations such as converting string values read from the console and converting them 
into numeric values. There’s always the possibility a user will enter a string that does not repre-
sent a valid numeric value and will fail the conversion. Use an except clause to gracefully handle 
exceptions. 

The __name__ property of a module directly executed by the Python interpreter is set to the 
string value '__main__'. The idiomatic expression:
if __name__ == '__main__':

main()

...checks the value of the module’s __name__ property and if it equals '__main__' it calls the 
main() method. 

The Python Standard Library contains modules you can import into your programs when you 
need specialized functionality. When the standard library falls short, you can install third-party 
packages with pip or pip3 and import them into your program.

Skill-Building Exercises

1. Study Python Standard Library: Study the Python Standard Library. Make this a standing 
assignment and focus on a particular section each day. For example, start with the built-in func-
tions and note their usage, followed by the built-in constants, etc. Note that the goal is not to 
memorize the contents of the standard library, but rather to familiarize yourself with the con-
tents so that when you need to do something in your code, you’ll remember there was some-
thing in the library that could help you. 

2. Peruse The Python Package Index (PyPI): Familiarize yourself with the Python Package 
Index (PyPI) website https://pypi.org. 

https://docs.python.org/3/library/index.html
https://pypi.org


Python Standard Library And Python Package Index Chapter 3: Small Victories: Simple Python Programs

116 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
1
1

3. Study The Package Installer For Python (pip or pip3): Study the purpose and use of the 
Package Installer for Python or Pip for short. (On Windows you run the pip command; on 
Unix/Linux you run pip3.) Where are these packages installed on your system? 

3. Verify Operation of Visual Studio Code Embedded Terminal: If you’re using Visual Studio 
Code, launch the embedded terminal and verify its operation. If it seems glitchy, try starting 
Code from the command line with the command code --disable-gpu and see if that corrects 
the issue. 

4. Visual Studio Code Embedded Terminal on Windows: Change the terminal profile from the 
Command-Prompt to Git Bash as discussed in section 4.4. The reason you’ll want to do this is 
so you can run bash scripts in later chapters. 

5. Research The Python Interpreter Interactive Mode (REPL): Although we did not dwell too 
long on how to use the Python interpreter in Interactive Mode, it is a quite powerful learning 
tool. Try running examples 3.2, 3.3, and 3.4 in the REPL. Here’s how I recommend you pro-
ceed. Change to a project directory that contains the Python file you want to run in the REPL. 
Launch the Python interpreter in Interactive Mode and at the >>> prompt type import module, 
where module is the name of the Python file you want to run minus its extension. (Very 
important!) Example: You want to import and run the basic_io.py example. Navigate to the 
basicio directory, launch the Python interpreter, and at the REPL prompt >>> type: import 
basic_io. Note the difference between the behavior you see when importing the basic_io mod-
ule vs. importing the calc_sums module. Can you explain the difference? What must you enter 
at the REPL prompt to run the calc_sums program?

6. PEP 8 — Style Guide For Python Code: Browse and study the PEP 8 Style Guide for Python 
Code: https://peps.python.org/pep-0008/. Focus on the sections related to code formatting, and 
function and variable naming. 

7. The Python Debugger: Python has a debugger, pdb, which can be used to debug Python pro-
grams from the command line. Research the Python Debugger and use it to debug a program 
you have written. Documentation for the Python Debugger can be found here: https://
docs.python.org/3/library/pdb.html

Suggested Projects

1. Alternative Python Integrated Development Environments: Visual Studio Code is not the 
only IDE you can use to develop Python code. Research alternative IDEs like those offered by 
Jet Brains https://www.jetbrains.com, and Microsoft Visual Studio https://visualstudio.micro-
soft.com. Microsoft Visual Studio is like Visual Studio Code’s big brother.

2. Modify calc_sums.py: Modify example 3.3, calc_sums.py, to convert user input to either inte-
gers or floats, depending on what they enter at the console. Enhance error and exception hand-
ing to validate user string input before attempting to perform a conversion. Note that making 

https://pip.pypa.io/en/stable/getting-started/
https://www.jetbrains.com
https://visualstudio.microsoft.com
https://visualstudio.microsoft.com
https://peps.python.org/pep-0008/
https://docs.python.org/3/library/pdb.html
https://docs.python.org/3/library/pdb.html


Chapter 3: Small Victories: Simple Python Programs Python Standard Library And Python Package Index

Computer Scripting Techniques with Python © 2024 Pulp Free Press 117

0
0
0
0
0
0
1
1

these changes will require you to learn features of Python not discussed in this chapter but cov-
ered later in the book. 

3. Validate Date of Birth String: Modify example 3.4, calculate_age.py, to validate the format of 
the date of birth string entered by the user. Enhance error checking and exception handling to 
ensure a user enters a properly formatted date string before attempting a conversion. Note that 
making these changes will require you to learn features of Python not discussed in this chapter 
but covered later in the book.

4. Python Arithmetic Operators: Write a short program that uses all the Python arithmetic oper-
ators listed in section 2.5 here: https://docs.python.org/3/reference/lexical_analysis.html#oper-
ators. If you’re unsure of an operators meaning research its usage. 

5. Convert A String To Uppercase Characters: Write a program that prompts a user to enter a 
message, convert the message to all uppercase characters, and prints the results to the console.

6. Convert A String To Lowercase Characters: Write a program that prompts a user to enter a 
message, convert the message to all lowercase characters, and prints the results to the console. 

Self-Test Questions

1. What type of object does the input() method return?

2. What Python Standard Library string utility method do you use to split strings into substrings?

3. In the following string, 'Jane, Steve, Sapna, Kateryna, Coralie, Heather', what char-
acter would you supply as an argument to the string.split() method to divide the string into 
substrings of names. 

4. What type of object does the string.split() method return?

5. Can the built-in int() function convert strings that start with '+' or '-' characters?

6. Which built-in function would you use to convert the following string to a numeric type: '-
23.45'?

7. Explain in your own words the difference between string concatenation and formatted strings? 

8. Describe in your own words how a Python module is loaded and executed.

9. What’s the difference between a syntax error and an exception?

10. What is a module’s __name__ property set to if the module is imported into another module? 
What’s it set to if the module is executed directly by the Python interpreter? 

https://docs.python.org/3/reference/lexical_analysis.html#operators
https://docs.python.org/3/reference/lexical_analysis.html#operators


Python Standard Library And Python Package Index Chapter 3: Small Victories: Simple Python Programs

118 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
0
0
1
1

References

Official Python Website, https://python.org

PEP 8 — Style Guide for Python Code, https://peps.python.org/pep-0008/

Python Standard Library, Python 11, https://docs.python.org/3/library/index.html

Python Package Index (PyPI), https://pypi.org

Python DateUtil Package on PyPI, https://pypi.org/project/python-dateutil/

Python Interpreter Reference, https://docs.python.org/3/tutorial/interpreter.html

Notes

https://docs.python.org/3/library/index.html
https://pypi.org
https://pypi.org/project/python-dateutil/
https://docs.python.org/3/tutorial/interpreter.html

	Ch-3: Small Victories: Simple Python Programs
	1.1 The Addition ‘+’ Operator
	1.2 Variables
	1.3 Type Conversion
	1.4 Exiting The Python Interpreter
	1.5 Final Thoughts On The REPL
	2 Run Python Programs From The Command Line
	2.1 Fixing Common Errors

	3 Run Python Projects With Visual Studio Code
	3.1 Update Visual Studio Code And Extensions
	3.2 Think Project Folder
	3.3 Running A Program
	3.4 Launch Git-Bash in Code’s Embedded Terminal
	3.5 Debugging Programs In Visual Studio Code

	4 Type Conversion And Error handling
	4.1 How A Module Executes

	5 Importing Modules And Installing Packages
	6 Python Standard Library And Python Package Index


