
Computer Scripting Techniques with Python © 2024 Pulp Free Press 253

0
0
0
0
1
0
0
0

00001000

Ch-8: Source Code Management With Git and GitHub

Learning Objectives
• State the purpose of source code management
• State the purpose of a local repository
• State the purpose of a remote repository
• Create a remote repository in GitHub
• Generate SSH public and private keys with the ssh-keygen tool
• Configure private SSK key to load into the ssh-agent automatically
• Configure Git and GitHub to use SSH
• Clone a GitHub repository with an SSH URL
• List the steps involved with a simple Git workflow
• Apply the git commands: clone, status, add, commit, and push
• Checkout a branch with the git checkout command
• List the steps involved with a branch and merge workflow
• Open a pull request on GitHub
• Merge a branch in GitHub
• Avoid common Git pitfalls

CHAPTER 8
Source Code Management

With Git and GitHub

Chapter 8: Source Code Management with Git and GitHub

254 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
0
0
0

Introduction

If you intend to be a professional software engineer, you need to cultivate a practical under-
standing of source code management (SCM). Unfortunately, it’s a topic often overlooked or
ignored completely in school. It’s assumed you will learn it later, on the job, sometime down the
road. I completely disagree with that approach.

I believe you gain significant benefits by being exposed to SCM tools and processes as early
in your education as possible, preferably when first learning how to program. The concepts are
easy to grasp, the processes are easy to follow, and the tools, once you understand how they work,
are easy to use. Like any skill learned early and practiced often, SCM soon becomes second
nature.

Learning and making a habit of SCM delivers many benefits. Primarily, you gain a real, pro-
fessional skill that sets you apart from the pack. Having a practical understanding of SCM enables
you to integrate quickly with a development team. All other things being equal, a hiring manager
will most likely choose the candidate who understands SCM over the one who doesn’t. Tech com-
panies often gauge how well new developers are doing via a metric called “Time to First Com-
mit”, which measures the time it takes a new recruit from the day they’re hired until they open
their first pull request. Seasoned team members appreciate someone who can join a team, quickly
get the lay of the land, run with a JIRA ticket, and push their changes to the repository without a
lot of hand holding and without screwing things up. In other words, if you know what you’re
doing when you join the team, you’ll quickly gain the respect of your peers.

SCM provides flexibility. If you use multiple computers to work on code in different loca-
tions, you can use SCM to host a remote repository online and have local copies of the repository
on your desktop machine at home or at work, and another local copy of the repository on your lap-
top. By adopting a simple process, you can work on code in one location, push your changes to
the remote repository, change to another machine at a different location, update the local reposi-
tory, work on another set of changes, and on and on.

SCM supports disaster recovery. Because your projects are stored on a remote repository, you
can suffer a handful of catastrophes and be assured your code base is secure. To make this happen,
you must adopt and follow a regular routine of committing and pushing code changes at the end
of each coding session.

Finally, SCM doesn’t just apply to source code. I use SCM tools and processes, specifically
Git and GitHub, to manage the files of this book, business development projects, and other non-
technical writing projects. Any project you’d like to host on a remote repository and check out
and work on from multiple machines at different times and in different locations, will benefit
from SCM tools and processes.

I’ve talked a lot about source code management in this introduction, but what is SCM exactly?

1 Source Code management (SCM)

Source Code Management, or simply SCM, is a set of tools and processes designed to track
and manage changes to software project source code files and related artifacts. SCM goes by
many names including version control, configuration management, and revision tracking. All
SCM tools have the same primary goal, namely, to track and maintain a history of changes made

Chapter 8: Source Code Management with Git and GitHub

Computer Scripting Techniques with Python © 2024 Pulp Free Press 255

0
0
0
0
1
0
0
0

to source code files or other project artifacts placed under change management. Another goal of
SCM is conflict resolution, meaning how changes made to the same file by two or more develop-
ers are mitigated and resolved.

The tools of choice I’ve selected for this book include Git as the source code manager and
GitHub as the remote repository site. There are other tools and remote repository sites, but Git and
GitHub have quickly become de facto industry standards. Today, 84% of Fortune 100 companies
use Git for SCM and the number continues to grow. Not only is Git the SCM of choice for the
commercial sector, many agencies of the U.S. Federal Government use Git for source code man-
agement as well.

1.1 SCM Architecture And Processes

Figure 8-1 offers an overview of an SCM architecture and processes.

Referring to figure 8-1 — The primary architectural components of any SCM system include
a remote repository and a local repository. The selected SCM tools dictate the range of operations
that can be performed on local and remote repositories.

A software engineer begins their work by first making a copy of the remote repository on their
local machine. They perform work on selected files in a working area or workspace. When fin-
ished, they add the modified files to a staging area. Next, they commit the modified files to their
local repository. Finally, at some convenient point or when they deem work on an assigned task is
complete, they push their changes to the remote repository.

The remote repository may have one or more branches. One branch is usually designated the
main or master branch. Developers create additional branches as necessary to isolate related work
such as new features or bug fixes. Later, when work on a branch is complete, it is merged with the
main branch and deleted. This usually happens only after a code peer review gives the all clear.
The exact process employed depends largely on development team dynamics, experience, and
policy.

Figure 8-1: Source Code Management System Architecture and Processes

https://git-scm.com
https://github.com

Git Chapter 8: Source Code Management with Git and GitHub

256 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
0
0
0

Quick Review

Source Code Management, or SCM, is a set of tools and processes designed to track and man-
age changes to software project source code files and related artifacts. The SCM tools selected for
this chapter include Git and GitHub.

2 Git

Git is a powerful, lightweight, fast, flexible, and distributed source code management system.
Its power intimidates both neophytes and experienced SCM users, but in reality, you can get a lot
done with Git with only a small handful of commands following simple workflows.

2.1 Git Is Fast

Git is fast because it tracks changes to repository assets differently from other SCM systems,
and most operations are performed on the local repository. You can learn more about how this is
done here: https://git-scm.com/about/small-and-fast.

2.2 Git Is Flexible

Git is flexible because it does not lock you in to one particular workflow. Git supports multi-
ple workflows, and individuals and teams can adopt a workflow that best suits their needs. You
can learn more about the different types of Git workflows here: https://git-scm.com/about/distrib-
uted. The type of workflow you adopt depends on the size of the project and whether or not you
work as an individual or with a team of developers. If you’re a student or professional developer
working independently, your workflow will be quite simple and easy to implement, and the one
I’ll be presenting in this chapter.

2.3 Git Is Distributed

Git is distributed in that every developer has a copy of the full repository on their local
machine. Figure 8-2 illustrates this concept.

Figure 8-2: Distributed Git

https://git-scm.com/about/small-and-fast
https://git-scm.com/about/distributed
https://git-scm.com/about/distributed

Chapter 8: Source Code Management with Git and GitHub Git

Computer Scripting Techniques with Python © 2024 Pulp Free Press 257

0
0
0
0
1
0
0
0

Referring to figure 8-2 — Three developers, Haluk, Stevie, and Samantha are members of a
small development team working remotely. To begin work, they each start by cloning the remote
repository’s main branch to their local machine. At this point, they each have a complete copy of
the remote repository. They have agreed to work according to the following process or workflow.
After they clone the repository, they create a new branch on their local machines using the git
checkout -b command. They pick a branch name based on a branch naming convention. Teams
usually use a work ticketing system like JIRA and name the branches according to ticket numbers,
but in this case, I’ve just used the names feature_a, bug_fix, and feature_b for the branch
names. Haluk is assigned to work on feature_a. He creates a branch by that name on his local
machine and works on that branch, adding new files and editing existing files as necessary. All
adds and commits will go against the feature_a branch unless he switches back to the main
branch. When he’s ready, he pushes his branch to the remote repository with the git push com-
mand.

Samantha is working on feature_b and creates a branch by that name on her local machine.
When she completes her work, she too pushes her changes to the remote repository with the git
push command. She also submits a pull request, and after her code has been peer reviewed by her
teammates, the feature_b branch is merged with the main branch. At this point, Samantha can
delete the feature_b branch from both her local and remote repositories as it’s no longer
required.

If another developer’s changes are merged with the main branch then developers will need to
update their local copy of the main branch with a git pull command before starting work on a
new branch. This cycle continues as new work is assigned, performed, and completed.

Note that Stevie has yet to push her big_fix branch to the remote repository, which is why it
is currently located only on her local machine.

2.4 Local Repository Organization

Figure 8-3 shows how a local repository is organized.

Referring to figure 8-3 — When a developer clones the main branch with the git clone com-
mand, its contents is automatically checked out and made available in the local workspace. To
you, the developer, this looks just like an ordinary directory, but the files in that directory are
being tracked by Git, this includes edits to existing files along with new and deleted files. Modifi-
cations, additions, and deletions are then staged with the git add command. At some point the
staged files are committed to the local repository with the git commit command. The cycle of

Figure 8-3: Local Repository Organization

https://www.atlassian.com/software/jira

Git Chapter 8: Source Code Management with Git and GitHub

258 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
0
0
0

working on files, adding, and committing can be repeated as often as required. At some point,
usually when work is complete, the changes made to the local repository are pushed to the remote
repository. In this case, the changes made to the local copy of the main branch are pushed to
remote copy of the main branch.

This simple workflow is sufficient for individual developers as there is little chance of intro-
ducing conflicting changes to the remote repository when only one developer is working on a
project.

2.5 Checking Out A New Local Branch

A more complex workflow used by both individuals and teams is shown in figure 8-4.

Referring to figure 8-4 — Work starts as usual by first using git clone to clone the main
repository branch. The Musketeer’s agreement between team members is they do not work on the
main branch. Instead, they checkout a new branch based on some naming scheme using the git
checkout -b command. In this case, a developer is working on a bug fix and so created a new
branch on their local machine named bug_fix. A new branch is a complete copy of the reposi-
tory. In other words, the bug_fix branch is a complete copy of the main branch. The developer
then modifies files, adds new files, or deletes files as required. All such modifications are tracked
by Git in the new branch’s workspace. When ready, the developer can stage their modifications
with the git add command, and commit changes to the local bug_fix branch with the git com-
mit command. When work is complete, the developer pushes the bug_fix branch to the remote
repository with the git push command. At some point, the developer will submit a pull request,
and when their code has been peer reviewed, the bug_fix branch is merged with the main branch

Figure 8-4: Checkout New Local Branch

Chapter 8: Source Code Management with Git and GitHub Configure SSH Keys For GitHub

Computer Scripting Techniques with Python © 2024 Pulp Free Press 259

0
0
0
0
1
0
0
0

and then deleted if no longer required. At this point, other developers would need to do a git
pull to update their local main branches.

2.6 Practice Makes Perfect

As with any new skill, programming or otherwise, you will not get proficient at Git by just
looking at a few diagrams and reading a narrative. You’ll need to dive in, create a remote reposi-
tory, clone it, add some files, make some edits, commit the changes, and push those changes to the
report repository. You’ll want to write these commands down along with the workflow steps you
decide to adopt in your Engineer’s Notebook.

Quick Review

Git is a powerful, lightweight, fast, flexible, and distributed source code management system.
Its power intimidates both neophytes and experienced SCM users, but in reality, you can get a lot
done with Git with only a small handful of commands.

Work generally starts with cloning a remote repository. There’s usually one branch in the
remote repository designated main or master. Cloning a remote repository makes a complete
copy of the repository on your local machine and does an automatic checkout of tracked files into
your workspace, ready for editing. As work progresses, you edit files, add new files, or remove
files as required. Stage changes with the git add command. Save changes to your local reposi-
tory with the git commit command, and push local repository changes to the remote repository
with the git push command.

3 Configure SSH Keys For GitHub

Before you can push changes from your local repository to your remote repository you’ll need
to create and configure Secure Shell (SSH) keys to ensure you have a secure connection between
your local machine and GitHub.

Generating and configuring SSH keys is a fairly simple process, but if you have little to no
experience using terminal commands, that’s where you’ll run into problems. If you follow the
steps outlined in this section you will succeed! If you’d rather watch a video, I have created one
just for you: https://youtu.be/icxmJDmQ0GI These steps work in Windows, Linux, and macOS,
but I am making the following assumptions.

3.1 Assumptions

• You have verified Git is installed and working
• Windows users are using the Git Bash terminal
• You have a GitHub account

3.2 Preconditions

The process starts in your home directory. Launch a terminal and, if not already there, change
to your home directory '~' by executing the following command:

https://youtu.be/icxmJDmQ0GI

Configure SSH Keys For GitHub Chapter 8: Source Code Management with Git and GitHub

260 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
0
0
0

cd

This will change to your home directory. Verify you are there before proceeding.

3.3 Process Overview

The rest of this section guides you step-by-step through the following process:
• Verify the existence of, or create, the ~/.ssh directory
• Create a ~/tmp directory in which to practice SSH key generation
• Generate public and private SSH keys with a passphrase
• Copy the public and private SSH keys to the ~/.ssh directory
• Add the public key to your GitHub account
• Add the private key to your local machine’s SSH Agent
• Test your SSH key

3.4 Verify or Create .SSH Directory

List the contents of your home directory including hidden files and folders with the following
command:
ls -al

If you see the ~/.ssh directory listed, you’ll need to proceed with caution because you may
already have SSH keys in that directory. To check, list the contents of the ~/.ssh directory with the
following command:
ls -al .ssh

If the ~/.ssh directory is not empty, note the names of the files. You may have a config and/or
known_hosts file along with other files that may be public and private key files. Public key files
have a .pub file extension. You’ll simply need to ensure the names of the keys you generate in this
section have a different name from the ones already in the ~/.ssh directory, that’s all.

If the ~/.ssh directory does not exist, create it with the following command:
mkdir .ssh

Verify it was created by listing the contents of your home directory. Note that the '.' is import-
ant in the ~/.ssh directory name because it’s a hidden directory, and that’s the directory in which
your computer system expects to find SSH keys and configuration files.

3.5 Create tmp Directory

You’ll want to create a ~/tmp directory in which to practice SSH key generation until you get
the swing of it and get the keys you want. If the ~/tmp directory doesn’t already exist, create it
with the following command:
mkdir tmp

Now, change to the ~/tmp directory with the following command:
cd tmp

Your prompt should now show you’re in the ~/tmp directory. It is in here that you’re going to
practice generating SSH keys until you completely understand the process.

Chapter 8: Source Code Management with Git and GitHub Configure SSH Keys For GitHub

Computer Scripting Techniques with Python © 2024 Pulp Free Press 261

0
0
0
0
1
0
0
0

3.6 Generate SSH Keys

Before proceeding, verify you’re in the ~/tmp directory. Also, before generating keys, you
need to understand what the key generation command actually does by default so you don’t think
you’re going crazy. I don’t recommend using the default values. Instead, you should take control,
figure out how the command works, and save yourself a lot of grief. This leads me to post the fol-
lowing Pro Tip.

Pro Tip: Be Careful! When you generate a set of SSH keys, the default output location is the ~/.ssh direc-
tory. That’s OK if there are no keys in that directory, but you should explicitly specify a key name when
you run the ssh-keygen tool to ensure the keys are generated in the ~/tmp directory.

To generate SSH keys you’ll use the following command:
ssh-keygen -t ed25519 -C "your_github_email@example.com"

The ssh-keygen command has a lot of options and a lot of uses, but the -t and -C options
shown above are all you need to generate keys for use with Git and GitHub. Table 8-1 explains the
purpose of each command option.

Referring to table 8-1 — The -t switch specifies the cryptographic algorithm used to generate
the keys. Older systems may not support the ed25519 algorithm. In that case use -t rsa to gener-
ate an RSA key. If your computer’s operating system is relatively new then ed25519 will work
just fine. The -C switch specifies a comment. Use your GitHub account email.

OK, when ready, execute the ssh-keygen command. I will use my GitHub account email.
ssh-keygen -t ed25519 -C "rick@pulpfreepress.com"

Your terminal output at this point will look similar to figure 8-5.

Section Description

ssh-keygen Command that generates SSH keys

-t ed25519 -t Specifies the type of key generation algorithm. In this
case, it’s specifying the ed25519 algorithm. If ed25519 is
not supported on your system use -t rsa.

-C "your_github_email@example.com" -C (dash Capital 'C') Add a comment. Use your GitHub
account email.

Table 8-1: ssh-keygen Command

Figure 8-5: Generating SSH Keys with ssh-keygen Tool — Custom Key Name

Configure SSH Keys For GitHub Chapter 8: Source Code Management with Git and GitHub

262 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
0
0
0

Referring to figure 8-5 — Notice that on the last line the tool indicates that if you don’t enter a
custom key name, it will generate the public and private keys with the names id_ed25519 and
id_ed25519.pub to the ~/.ssh directory. I’m creating keys named mac_vm_devkey and
mac_vm_devkey.pub, which will be saved in the current working directory, which in this case is
~/tmp. I recommend you use a custom key name as well. You can have as many SSH keys as
required, usually one for each machine you use for coding or interacting with GitHub.

OK, when you’re ready, hit return. You’ll be prompted to enter a passphrase. I strongly rec-
ommend using a passphrase because it makes your private key more secure. Be sure not to forget
your passphrase. If you do, you’ll need to generate new SSH keys. Figure 8-6 shows my terminal
after I’ve entered my passphrase and listed the contents of the ~/tmp directory.

Referring to figure 8-6 — Your output will look slightly different. You’ll have a different
email address, different SSH key names, a different key fingerprint, and a different randomart
image. Note that the public key is the file that ends with the .pub suffix. Just keep that in mind as
you proceed with the next few steps. Almost done! Hang in there!

3.7 Copy Keys To .ssh Directory

If you’re happy with your SSH keys you can copy them to the ~/.ssh directory. To do that from
the ~/tmp directory use the following command:

cp * ~/.ssh

Figure 8-6: SSH Key Generation Complete — ~/tmp Directory Listed

Chapter 8: Source Code Management with Git and GitHub Configure SSH Keys For GitHub

Computer Scripting Techniques with Python © 2024 Pulp Free Press 263

0
0
0
0
1
0
0
0

This will copy everything in the ~/tmp directory to the ~/.ssh directory. Verify your SSH keys
are now in the ~/.ssh directory.

3.8 Add Public Key To GitHub

To use your new SSH keys with GitHub, you’ll first need to add the public (.pub) key to
GitHub’s list of SSH keys. Login to GitHub, click on your profile picture, and from the dropdown
menu select Settings. In the left-hand column select SSH and GPG keys. This will open the SSH
and GPG keys page as shown in figure 8-7.

Referring to figure 8-7 — If this is your first rodeo then you’ll have no SSH keys listed. See
the New SSH key button? I’ll come back to that in a bit, but first, you’ll need to copy the contents
of your public SSH key. To do this, navigate to the ~/.ssh directory if you’re not already there, and
type the following command...
cat keyname.pub

...where keyname is the name of your SSH key. Your output will look similar to Figure 8-8.

Referring to figure 8-8 — Extend your terminal window’s width to see the whole public key
string on one line as shown above. Next, select the entire string as shown, then right-click and
copy the string. This method works on all three operating systems: macOS, Windows (Git Bash),
and Linux. Next, return to the GitHub SSH and GPG keys page, and click the New SSH key but-
ton to launch the SSH keys/Add new page as shown in figure 8-9.

Referring to figure 8-9 — Enter a title for your key in the Title textbox. Leave the Key type
dropdown set to Authentication Key, and in the Key textbox, right-click and paste your public key
string as shown in figure 8-10.

Figure 8-7: GitHub SSH & GPG Keys Page — No Keys Added

Figure 8-8: List SSH Public Key Contents to the Console with the cat Command

Configure SSH Keys For GitHub Chapter 8: Source Code Management with Git and GitHub

264 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
0
0
0

Referring to figure 8-10 — Make sure everything is good-to-go, then click the Add SSK key
button. You should now see your new SSH key listed on the SSH and GPG keys page as shown in
figure 8-11.

Referring to figure 8-11 — If everything looks good, you’re done with GitHub — for now. If
you made a mistake along the way, don’t sweat it! Repeat the process a few times and you’ll get
the hang of it. SSH key generation really is one of those things you need to figure out and then
once you do it you won’t do it again for so long you’ll forget how you did it. Well, a lot of soft-

Figure 8-9: GitHub SSH keys/Add new Page

Figure 8-10: New SSH Key Details Filled In

Chapter 8: Source Code Management with Git and GitHub Configure SSH Keys For GitHub

Computer Scripting Techniques with Python © 2024 Pulp Free Press 265

0
0
0
0
1
0
0
0

ware engineering is like that. Write it down in your Engineer’s Notebook! Now, you need to test
your new SSH keys.

3.9 Start SSH Agent on Local Machine

Start the SSH agent on your local machine with the following command:
eval "$(ssh-agent -s)"

The result of running this command will be a process ID (pid) similar to what’s shown in fig-
ure 8-12.

Referring to figure 8-12 — Your Agent pid value will be different from what’s shown above
and that’s fine. You can now add your private key to your SSH agent.

3.10 Add Private Key To SSH Agent

Before you can use your new SSH keys with GitHub, you’ll need to add the private key to
your local machine’s SSH agent with the following command...
ssh-add keyname

Figure 8-11: Your New SSH Key Should Now Be Listed

Figure 8-12: Starting SSH Agent on Local Machine

Configure SSH Keys For GitHub Chapter 8: Source Code Management with Git and GitHub

266 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
0
0
0

...where keyname is the name of your private SSH key. When prompted, enter your private
key passphrase. Your session will look similar to figure 8-13.

Referring to figure 8-13 — If you don’t get the Identity added message, ensure you started
the SSH agent and make sure your passphrase is correct. If all goes well (The mating call of a cod-
ing boot camp graduate!), you can proceed to test your SSH key.

3.11 Test SSH Keys

Alright, a quick audit: You’ve generated your SSH keys, added the public key to GitHub, and
added your private key to your computer’s SSH agent. — Test your SSH keys with the following
command:

ssh -T git@github.com

The output should look similar to figure 8-14.

Referring to figure 8-14 — When you execute the test, you’ll be prompted with the following
message: "Are you sure you want to continue connecting (yes/no/[fingerprint])?"
Type yes and hit return. You should see the message "...You’ve successfully authenti-
cated..." If instead it reads "...access denied...", then ensure you added your SSH key to
the local machine’s SSH agent.

When the test successfully completes, you’ll have a new file named known_hosts in your ~/
.ssh directory as shown in figure 8-15.

Referring to figure 8-15 —I’ll leave it as an exercise to explore the contents of the
known_hosts file. OK, that’s it for SSH key generation. Like I said earlier, you can generate as
many SSH keys as required. If you use both a desktop machine and a laptop to code, create a dif-
ferent set of SSH keys for each machine.

Figure 8-13: Add Private SSH Key to SSH Agent with add-ssh Command

Figure 8-14: Testing SSH Keys with ssh -T Command

Chapter 8: Source Code Management with Git and GitHub Configure SSH Keys For GitHub

Computer Scripting Techniques with Python © 2024 Pulp Free Press 267

0
0
0
0
1
0
0
0

3.12 Load SSH Private Key Into SSH Agent Automatically

To avoid having to manually load your SSH private key into the SSH agent every time you
launch a terminal, you can configure it to be automatically loaded. All three operating systems run
OpenSSH, but macOS has the KeyChain application, which stores your private key password, so
its SSH configuration is slightly different. I’ll start with macOS.

3.12.1 macOS

For macOS, in your ~/.ssh directory, create a file named config and add the lines shown in
example 8.1.

8.1 ~/.ssh/config (macOS)
1 Host *
2 AddKeysToAgent yes
3 UseKeychain yes
4 IdentityFile ~/.ssh/private_key

Referring to example 8.1 — Replace private_key with the name of your private key. On line
3, the UseKeyChain option stores your private key password in the macOS KeyChain application
which eliminates the need to reenter your password every time you launch a terminal.

3.12.2 Linux Mint

Linux Mint users just need to add a config file in their ~/.ssh directory with the lines shown in
example 8.2

8.2 ~/.ssh/config (Linux Mint)
1 Host *
2 AddKeysToAgent yes
3 IdentityFile ~/.ssh/private_key

Referring to example 8.2 — Replace private_key with the name of your private key. If you
have a passphrase, you’ll need to enter it the first time you launch a terminal.

3.12.3 Windows Git Bash

Getting the desired behavior on Windows with Git Bash takes some finesse. I found the fol-
lowing solution here. First, create a config file in your ~/.ssh directory and add the lines shown in
example 8.3

Figure 8-15: ~/.ssh Directory Listing Showing known_hosts File

https://gist.github.com/jherax/979d052ad5759845028e6742d4e2343b
https://gist.github.com/jherax/979d052ad5759845028e6742d4e2343b

Configure SSH Keys For GitHub Chapter 8: Source Code Management with Git and GitHub

268 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
0
0
0

8.3 ~/.ssh/config (Windows Git Bash)
1 Host *
2 AddKeysToAgent yes
3 IdentityFile ~/.ssh/private_key

Referring to example 8.3 — Replace private_key with the name of your private key. Next,
create a ~/.bashrc file and add the lines shown in example 8.4.

8.4 ~/.bashrc (Windows Git Bash)
1 # Start SSH Agent
2 #----------------------------
3
4 SSH_ENV="$HOME/.ssh/environment"
5
6 function run_ssh_env {
7 . "${SSH_ENV}" > /dev/null
8 }
9
10 function start_ssh_agent {
11 echo "Initializing new SSH agent..."
12 ssh-agent | sed 's/^echo/#echo/' > "${SSH_ENV}"
13 echo "succeeded"
14 chmod 600 "${SSH_ENV}"
15
16 run_ssh_env;
17
18 ssh-add ~/.ssh/private_key;
19 }
20
21 if [-f "${SSH_ENV}"]; then
22 run_ssh_env;
23 ps -ef | grep ${SSH_AGENT_PID} | grep ssh-agent$ > /dev/null || {
24 start_ssh_agent;
25 }
26 else
27 start_ssh_agent;
28 fi
29

Referring to example 8.4 — On line 18, replace private_key with your private key. Finally,
edit your ~/.bash_profile and add the lines shown in example 8.5.

8.5 ~/.bash_profile (Windows Git Bash)
1 # Add these lines
2 test -f ~/.profile && . ~/.profile
3 test -f ~/.bashrc && . ~/.bashrc

Save the file, close all terminal windows, sign out of Windows, and sign in again. Launch a
Git Bash terminal, and when prompted enter your passphrase. You should be good-to-go.

Chapter 8: Source Code Management with Git and GitHub Configure SSH Keys For GitHub

Computer Scripting Techniques with Python © 2024 Pulp Free Press 269

0
0
0
0
1
0
0
0

3.13 SSH Key Generation Command Summary

Table 8-2 summarizes the commands used in this section to generate and test SSH keys for
use with GitHub.

Quick Review

GitHub requires the use of SSH keys to enable secure communications between local and
remote repositories. SSH keys and configuration files are located in the ~/.ssh directory. Use a
temporary directory, ~/tmp, to practice SSH key generation until you’re confident you’re generat-
ing the SSH keys you want. You can then copy the public and private keys to the ~/.ssh directory
when you’re ready to use them. To use your SSH keys with GitHub, you’ll need to add the public
SSH key to GitHub and add the private key to your computer’s SSH agent.

Command Description

ssh-keygen -t ed25519 -C "your_github_e-
mail@example.com"

Generate an SSH key with the ed25519 algorithm. This
results in a private and public key. The public key ends
with the .pub file suffix.

eval "$(ssh-agent -s)" Starts the SSH agent. You need to start the SSH agent
before adding your private key.

ssh-add keyname Add the private key to the SSH agent

ssh -T git@github Test the SSH connection to GitHub. This test will pass if
your public key is added to GitHub and your private key
is added to the SSH agent.

Table 8-2: SSH Key Generation Command Summary

Create GitHub Repository Chapter 8: Source Code Management with Git and GitHub

270 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
0
0
0

4 Create GitHub Repository

In this section, I walk you through the creation of a GitHub repository and discuss some things
you should consider before you create the repository. I’ll also discuss the purpose of the
README.md and .gitignore files as they are important repository files.

4.1 Repository Organization Considerations

You should pause to consider how you’ll use a repository before you create one. If you are a
student, you may need to create a repository to house class projects. If this is the case, then you
can create one repository with multiple subdirectories as shown in figure 8-16

Referring to figure 8-16 — This repository structure is ideal as each class project is contained
within it’s own directory. You can have one or more README.md files, one at the root of the
repository to provide an overview, and one in each project directory to document individual proj-
ects. The same goes for the .gitignore files, but I’m only showing one at the root of the repository
above. Each project folder contains source code and other project artifacts as required. I’ll discuss
project structure in more detail in Chapter 9: Project Structure.

Essentially, a repository is a directory with a .git file at its root. There are effective directory
structures for small projects and effective directory structures for larger projects. The Git work-
flows employed with each type of project will differ based on project complexity and the size of
the development team. The repository structure shown in figure 8-16 is ideal for the student or
individual contributor working on small to medium-sized projects.

If your project is large and complex, you may want to create a dedicated repository just for
that project. In that case, subdirectories will impose organization upon the different parts of the
project, either by architectural layer, like the user interface (UI) or web layer, mid-tier, back-end,
and cloud infrastructure. For the purposes of this book, the repository structure shown in figure 8-
16 will serve you well.

4.2 Create Python Class Projects Repository

There are several ways to create a repository on GitHub. You can initialize a Git repository on
your local machine and push it to GitHub, you can copy an existing repository, or, and my pre-
ferred way of doing business, start by creating the remote repository on GitHub and clone it to
your local machine. That’s the easiest way for beginners to get a repository up and running.

Figure 8-16: Repository with Multiple Project Directories

Chapter 8: Source Code Management with Git and GitHub Create GitHub Repository

Computer Scripting Techniques with Python © 2024 Pulp Free Press 271

0
0
0
0
1
0
0
0

4.3 Create New GitHub Repository

Login to GitHub and navigate to your Repositories page. Click on the New button in the upper
right-hand corner. This will open the Create a New Repository page as shown in figure 8-17.

Referring to figure 8-17 — Starting at the top, the Owner dropdown is set to your GitHub
account. In the Repository name field type in the name of your repository. In this example, I’m
naming the repository python_class_projects. Enter a description. Click either the Public or
Private radio button. Just something to think about, if you make your class projects repository
public then your classmates may sneak a peek. You may want to keep your repository private until
the semester ends. In the Initialize this repository with section click the Add a README.md
file checkbox, and from the Add .gitignore dropdown select .gitignore template: Python.
Leave the Choose a license dropdown set to none. Give everything a good once-over then click

Figure 8-17: Create a New Repository Page — GitHub

Create GitHub Repository Chapter 8: Source Code Management with Git and GitHub

272 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
0
0
0

the Create repository button. This will take you to your new repository’s page as shown in figure
8-18.

Referring to figure 8-18 — Your new repository is up and running and populated with
README.md and .gitignore files. You can now clone this repository to your local machine.

4.4 Clone The Repository With SSH

Still on your new repository page, click the <> Code dropdown, select SSH, and click the
copy button to the right of the repository URL as shown in figure 8-19.

Figure 8-18: New python_class_projects Repository Page

Figure 8-19: Copy Repository SSH URL

Chapter 8: Source Code Management with Git and GitHub Create GitHub Repository

Computer Scripting Techniques with Python © 2024 Pulp Free Press 273

0
0
0
0
1
0
0
0

Referring to figure 8-19 — The GitHub SSH repository URL has the following format:
git@github.com:account/repository_name.git

Your repository SSH URL will be different from the one shown in figure 8-19. Even if you
named your repository the same name I used in this section, your account name will be different.
Just something to keep in mind.

OK, once you’ve copied the repository SSH URL, navigate to your ~/dev folder and clone the
repository with the following command:
git clone [paste SSH URL here]

So, when I clone the repository this is what my complete command looks like:
git clone git@github.com:pulpfreepress/python_class_projects.git

When I execute this command on my local machine, I see the output shown in figure 8-20.

Next, list the contents of your ~/dev directory. You should see a subdirectory with the same
name as the repository you just cloned as shown in figure 8-21.

Referring to figure 8-21 — Since I just cloned a repository named python_class_projects, I
see a subdirectory by that name in my ~/dev directory. Change into your repository subdirectory.
If your prompt is configured to do so, you should see an indication you are on the main branch. If
you are using iTerm on macOS and have installed and configured Shell Integration and Status Bar

Figure 8-20: Results of Cloning The Repository

Figure 8-21: After Cloning a Repository — main Branch

Create GitHub Repository Chapter 8: Source Code Management with Git and GitHub

274 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
0
0
0

widgets, (See “iTerm2 Terminal Configuration” on page 24.), you’ll see the Git branch just below
the terminal window’s title bar, if you in fact added that Status Bar widget. If you do not see the
branch indication in your terminal prompt, the next section explains how to configure it.

Before moving on, list the contents of your local repository. You should see the same files in
the local repository directory as you see in the remote repository on GitHub with one additional
hidden directory named .git as shown in figure 8-22.

Referring to figure 8-22 — The .git directory stores repository configuration information and
is where Git keeps track of changes made to local repository files. You generally have no need to
modify anything in the .git directory, although rooting around in there can be quite educational.

4.5 Display Active Branch In Terminal Prompt

If you don’t see the active Git branch displayed as part of your terminal prompt, I highly sug-
gest you do so as being able to see clearly what branch you’re working on will save your hide.
Knowing what branch is currently active ranks right up there with knowing exactly where you’re
located on your file system, or knowing where your cat goes when it gets dark outside. Configur-
ing your prompt to display the active Git branch depends upon which operating system you’re
using. I’ll start with Windows and the Git Bash terminal.

4.5.1 Windows and Git Bash Terminal

Good news! As you learned in chapter 1 (See “Customize Bash Prompt” on page 52.), the Git
Bash terminal prompt comes pre-configured to display the active Git branch.

4.5.2 Linux Mint

If you have already followed the configuration steps in chapter 1 you can skip this section. If
not, please continue.

To configure the bash prompt in Linux Mint to display the current Git branch, you’ll need to
modify the prompt definition located in the .bashrc file. Open the .bashrc file with your editor of
choice, navigate to line 60, comment out that line by adding a hashtag ‘#’ to the beginning, create
a new line and paste the following prompt configuration:
PS1='\n\[\033[35m\]$(/usr/bin/date)\n\[\033[32m\]\w \[\033[1;33m\]
\W$(__git_ps1 " (%s)") \n\[\033[1;32m\][\!:\#]\[\033[1;33m\] \u@\h $
\[\e[0m\]'

Figure 8-22: Contents of Newly-Cloned Repository

Chapter 8: Source Code Management with Git and GitHub Create GitHub Repository

Computer Scripting Techniques with Python © 2024 Pulp Free Press 275

0
0
0
0
1
0
0
0

Note this is all one line of code. Breaking it down — PS1 is the prompt variable. It is initial-
ized here with a string containing a mix of terminal codes, prompt variables, and command
expansions. It starts with a newline character '\n' to separate the prompt from the results of the
previous command. Next is the color code for the color purple followed by an expansion of the
current date followed by another new line character. The '\w' prompt variable prints the current
working directory path ($PWD) followed by a color change to yellow. The '\W' variable prints the
basename of ($PWD) or simply the current directory name followed by the expansion
$(__git_ps1 "(%s)" which inserts the current Git branch. This is followed again by a new line
character and the color code for bright green and the sequence [\!:\#] which denotes the shell
command history number and the current command number. This is followed by another change
to the color yellow followed by the username@hostname '\u@\h' and finally the prompt symbol
'$' followed by a space and the final escape sequence '\[\e[0m\]', which removes all format-
ting and attributes before the cursor is displayed.

After you complete these modifications, your Linux Mint terminal prompt will look like fig-
ure 8-23.

4.5.3 macOS

To customize the shell prompt, you’ll need to load the git-prompt.sh file into your ~/.bash_-
profile. The git-prompt.sh file is installed with the Xcode developer command-line tools. If you
haven’t installed Xcode or the developer command-line tools please do so now before proceeding.
When you’re ready, edit your ~/.bash_profile and add the following line:

source /Library/Developer/CommandLineTools/usr/share/git-core/git-prompt.sh

This will load and execute the git-prompt.sh file. Now, copy and paste the following prompt
configuration into your ~/.bash_profile below the line you just copied:

PS1="\n\[\033[35m\]\$(/bin/date)\n\[\033[32m\]\w \[\033[1;33m\]\$(__git_ps1
'(%s)')\n\[$(iterm2_prompt_mark)\]\[\033[1;32m\][\!:\#]\[\033[1;33m\] \u@\h $
"

This prompt configuration gives you a prompt like the one shown in figure 8-24.

Figure 8-23: Linux Prompt with Active Git Branch

Figure 8-24: Active Git Branch Shown in macOS iTerm Command Prompt

A Simple Git Workflow Chapter 8: Source Code Management with Git and GitHub

276 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
0
0
0

Quick Review

You need to give some thought about how you intend to organize your repository. Repository
organization is really directory organization. Small software development projects usually have a
simple directory structure while large, complex development projects have a directory structure
that better supports multiple teams with different development responsibilities working on the
same repository. For students, a simple repository structure organized around assigned class proj-
ects is ideal.

If you’re new to Git and GitHub, I recommend creating a repository on GitHub first and then
cloning the repository to your local machine. When you create the repository, add README.md
and .gitignore files.

Use the git clone command to clone the repository to your local machine. It helps to see the
active branch displayed in your command prompt.

5 A Simple Git Workflow

In this section, I want to demonstrate a simple Git workflow ideal for students and individual
contributors. It assumes you’re the only one working on your repository although you may do so
from multiple machines. The commands I’m going to discuss include: git clone, git status,
git add, git commit, and git push. You can easily perform 99% of routine Git repository oper-
ations with just these five commands. Refer back to figure 8-3 to see a visual representation of
what these commands do.

5.1 git clone

You’ve already used the git clone command to clone a repository. The first thing you need
to get used to, and you’ll forget from time to time, is the need to preface each Git command with
'git'. The general form of the git clone command is:
git clone github_repository_url

The best way to get the github_repository_url is to go to the GitHub repository page and
copy it. At some point, you’ll memorize the GitHub SSH and HTTPS repository URL forms, but
until then, copy it directly from the repository page to avoid making simple, forehead-smacking
mistakes.

5.2 git status

You’ll want to run the git status command after you make changes to your local repository
to see a list of those changes. The command is simply:
git status

To see the effects of this command, I’ll make some additions and modifications to the
python_class_projects repository I created and cloned earlier in this chapter. First, I’m going to
create a subdirectory called project_1, and in this directory I’ll add a README.md file along with
a main.py file. At this point, what’s in these files is not important, as I just want you to see the

Chapter 8: Source Code Management with Git and GitHub A Simple Git Workflow

Computer Scripting Techniques with Python © 2024 Pulp Free Press 277

0
0
0
0
1
0
0
0

effects of using the git status command. Figure 8-25 shows the git status command exe-
cuted from the root of the local python_projects_repository directory.

Referring to figure 8-25 — I’ve changed my terminal color settings to make it easier to read
the git status command output. In this case, it’s reporting the entire project_1 folder in the
Untracked files section. The last line says use "git add" to track. NOTE: You may have files
you do not want to track. You can add these files to the .gitignore file. Since I selected the Python
.gitignore template when I created the repository on GitHub, it already lists a lot of common files
found in typical Python projects. I recommend exploring the contents of this file to see what it
contains. You can always add to it. One file macOS users need to add to it is the .DS_Store file,
which gets created in a folder when you open it with a Finder window.

5.3 git add

Referring to figures 8-3 and 8-25— At this point, I’ve modified files in my workspace, but if I
want to put these files under source code management and track their changes going forward, I’ll
need to stage them for the next commit. That’s the purpose of the git add command. I also want
to add everything I just created so this is how I’ll use the git add command:
git add .

The dot means "Stage everything that’s been modified, added, or deleted." Figure 8-26 shows
the results of running the git add . command followed by git status.

Figure 8-25: Running git status After Adding project_1 Folder with a Few New Files

Figure 8-26: Running git add . Followed by git status Command

A Simple Git Workflow Chapter 8: Source Code Management with Git and GitHub

278 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
0
0
0

Referring to figure 8-26 — Running git add . produced no output. The git status com-
mand shows the staged changes. All the files in the project_1 folder are staged for the next com-
mit. This is considered typical usage of the git status command. You’ll run git status before
using git add to to see what’s been added, modified, or deleted, and again afterwards to see what
files were staged. Sometimes you’ll stage files by mistake. As you can see above, the output from
the git status command offers help on how to unstage a file. I’ll offer advice on how to avoid
or correct simple mistakes later in this chapter.

5.4 git commit

The git commit command actually saves the changes to the local repository. Files staged for
commit with the git add command are the files that will be saved to the local repository with the
git commit command. The git commit command takes the following general form:
git commit -m "Comment message about the commit."

To commit the changes I staged in the previous section, I’ll use the git commit command like
so:
git commit -m "Added project_1 folder."

Figure 8-27 shows the results of running this command.

Referring to figure 8-27 — At this point, all the additions, modifications, and deletions have
been saved to the local repository. You can continue to work on the project, adding, modifying, or
deleting files as required, and repeat the git status, git add, and git commit commands until
you reach a point where you want to push all those changes to the remote repository with the git
push command.

5.5 git push

The git push command transfers the state of your local repository to the remote repository.
To use the command, you simply type:

git push
Figure 8-28 shows the results of running this command.
Referring to figure 8-28 — After you push your local repository changes to the remote repos-

itory, you can check the contents of the remote repository to verify the changes have been suc-
cessfully been applied as shown in figure 8-29.

Figure 8-27: Results of Running git commit Command

Chapter 8: Source Code Management with Git and GitHub A Simple Git Workflow

Computer Scripting Techniques with Python © 2024 Pulp Free Press 279

0
0
0
0
1
0
0
0

5.6 Simple Git Workflow Command Summary

Table 8-3 summarizes the Git commands used in the simple workflow presented in this sec-
tion.

Git Command Description

git clone repository_url Makes a complete copy of a remote repository branch on your local
machine. The branch you typically clone is named either main or master.
When you clone the repository, all tracked files are automatically checked
out and made available in your workspace, where you can add, edit, or
delete files as required.

git status Shows the status of files in your workspace. Run this command often to see
the state of files before and after staging them with the git add command.

Table 8-3: Simple Git Workflow Command Summary

Figure 8-28: Pushing Local Repository main Branch Changes to Remote Repository with git push Command

Figure 8-29: GitHub Remote Repository After Pushing Changes

Branching And Merging Chapter 8: Source Code Management with Git and GitHub

280 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
0
0
0

5.7 Parting Thoughts

Throughout this section, I have performed all work on the main branch. If you’re a student or
professional working on a personal project, this is perfectly acceptable. However, if you intend to
collaborate with someone or want to test out an idea without mucking up the main branch, you’ll
need to create a new branch on which to work, and then later merge that branch into the main
repository branch. I cover the concepts of branching and merging in the next section.

Quick Review

As a student or individual, you can easily accomplish 99% of everything you need to with Git
using a simple workflow with the following commands: git clone, git status, git add, git
commit, and git push. Use the git status command often, especially before and after staging
files for commit with the git add command, to verify workspace file additions, changes, and
deletions. If you do not what to track changes of a particular file or set of files, add them to the
.gitignore file.

6 Branching And Merging

As discussed above, when working on a project as the sole developer, you are pretty safe
working on the main branch. However, there will be times when you’d like to try out an idea in
the code but aren’t sure you want to add that feature into the application. This is where branching
comes to the rescue.

Referring to figure 8-4 — Branching allows you to create and work against a copy of the
repository. Later, if you like the results, you can push the new branch to the remote repository and
merge it with the main branch. This is the workflow used by zillions of development teams
around the world. Most development teams incorporate a Peer Review into this workflow. In a
peer review, the developer who pushed the new branch to the repository submits a Pull Request.
By team agreement or policy, other development team members formally review the proposed
changes. If they approve the changes, they are merged into the main branch. At that point, the new
branch is deleted. Other team members then need to update their local copy of the repository’s
main branch with a git pull to ensure it’s up-to-date before proceeding with new work.

git add . Stages new, modified, or deleted files for the next commit. The '.' signi-
fies all files. You can also specify individual files.

git commit -m "message" Saves staged changes to the local repository.

git push Transfers local repository changes to the remote repository. You can verify
the push was successful by inspecting the remote repository.

Git Command Description

Table 8-3: Simple Git Workflow Command Summary (Continued)

Chapter 8: Source Code Management with Git and GitHub Branching And Merging

Computer Scripting Techniques with Python © 2024 Pulp Free Press 281

0
0
0
0
1
0
0
0

6.1 Creating A New Branch

To create a new branch, use the git checkout command with the -b switch, but first, a sce-
nario. In the previous section I added a project_1 folder along with several files to the python_-
class_projects repository and pushed those changes to the remote repository. Now suppose I have
an idea for a new feature in my project but don’t want to modify any of the files in the main
branch. The reason I don’t want to modify the main branch files is because if I don’t like the
results I’d need to back out all those changes, which would be super pain in the ass, depending on
how many files I modified, and likely introduce errors into working code. Creating a new branch
effectively makes a copy of the main branch and isolates work to the new branch.

To do this, I will navigate to the local python_class_projects directory and create a new branch
I’ll name feature_a with the following command:
git checkout -b feature_a

Figure 8-30 shows the results of running this command.

Referring to figure 8-30 — Notice, I started out on the main branch. Running git checkout
-b feature_a, created a new branch and automatically switched me into it. To list all current
branches use the git branch command like so:
git branch

Figure 8-31 shows the results.

Referring to figure 8-31 — You can see that the feature_a branch is highlighted and marked
with an asterisk, which indicates it is the active branch.

To switch between branches use the git checkout command followed by the name of the
branch you’d like to work on. For example, to switch back to the main branch use:
git checkout main

Follow that with a git branch command to see the active branch in the list of branches:
git branch

Figure 8-30: Creating New Branch with git checkout -b Command

Figure 8-31: List Branches with git branch Command

Branching And Merging Chapter 8: Source Code Management with Git and GitHub

282 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
0
0
0

Figure 8-32 shows the results of running these two commands.

Referring to figure 8-32 — I was in the feature_a branch and switched to the main branch by
running git checkout main. Running git branch shows main is indeed the active branch, as
does the command-prompt branch indicator. I will now switch back to the feature_a branch:
git checkout feature_a

Once there, I will make whatever modifications are necessary to implement "feature a", stag-
ing those changes with git add and saving them with git commit. When I’m ready, I push the
feature_a branch to the remote repository using git push:
git push

Figure 8-33 shows the results of running this command.

Referring to figure 8-33 — Notice that when pushing a new branch to the remote repository,
the output of the git push command suggests submitting a pull request. I’ll show you how to do
that in the following sections, but first, let’s take a look at the remote repository. Figure 8-34
shows my python_class_projects GitHub page after pushing the feature_a branch.

Figure 8-32: Switching Branches with git checkout Command

Figure 8-33: Pushing feature_a Branch to Remote Repository — Time for a Pull Request

Chapter 8: Source Code Management with Git and GitHub Branching And Merging

Computer Scripting Techniques with Python © 2024 Pulp Free Press 283

0
0
0
0
1
0
0
0

Referring to figure 8-34 — Notice there is now a notification on the repository page stating
that the feature_a branch had recent pushes 10 minutes ago. To the right of that notification is a
button that reads Compare & pull request. Click that button to go to the pull request page as
shown in figure 8-35.

Figure 8-34: GitHub python_class_projects Repository Page After Pushing feature_a Branch

Figure 8-35: Open Pull Request Page

Branching And Merging Chapter 8: Source Code Management with Git and GitHub

284 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
0
0
0

Referring to figure 8-35 — Notice that the feature_a branch can be automatically merged
with the main branch. Working as an individual, this will almost always be the case when you
push a new branch to the remote repository. Since you’re the only one working on the code base,
there are unlikely to be any conflicts between the branch you want to merge and the main branch.
I say almost always because you could accidentally modify and push the main branch before
pushing the new branch, which would introduce conflicts between the two branches. Just some-
thing to think about.

OK, while on the Open Pull Request page, scroll down and explore. It’s designed for collabo-
ration. A pull request signals to other developers that you think your code is ready to be merged,
but by policy or team practice, and out of an abundance of caution and good engineering practice,
nothing’s getting merged until it has been peer reviewed and approved. That’s the function of the
pull request page with its history of comments and other annotations.

When ready, click the Create pull request button. This pull request is now officially open and
ready for review and approval as shown in figure 8-36.

Referring to figure 8-36 — Click the Merge pull request button, then click the Confirm
merge button. At this point you can delete the feature_a branch as shown in figure 8-37.

Referring to figure 8-37 — This deletes the feature_a branch from the remote repository.
You’ll then need to delete the feature_a branch from your local repository and update your main
branch. To do this, use the following commands:
git checkout main

Switches to the main branch.
git branch -D feature_a

Deletes the feature_a branch.
git pull

Updates the local main branch with the changes merged from feature_a branch. Figure 8-38
shows the results of running these commands.

Figure 8-36: Pull Request Opened and Ready for Review and Merging

Chapter 8: Source Code Management with Git and GitHub Branching And Merging

Computer Scripting Techniques with Python © 2024 Pulp Free Press 285

0
0
0
0
1
0
0
0

Referring to figure 8-38 — At this point, you can return to work on the main branch or check-
out a new branch and repeat the process described in this section to crank out your next big idea!

Figure 8-37: Pull Request Merged — You Can Delete feature_a Branch

Figure 8-38: Deleting Local feature_a Branch.

Avoiding Common Mistakes Chapter 8: Source Code Management with Git and GitHub

286 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
0
0
0

6.2 Git Branching Workflow Command Summary

Table 8-3 lists the Git commands related to branching used in this section.

Quick Review

Branching allows you to create and work against a copy of the repository. Later, if you like the
results, you can push the new branch to the remote repository and merge it with the main branch.
This workflow is used by development teams around the world, and individual developers find it
helpful as well, as it allows you to work on an idea without modifying main branch code.

Start by creating a new branch with the git checkout -b command. This creates a new
branch and automatically switches into it. To switch between branches use git checkout. Work
in the new branch as you would normally work, and when ready, push the new branch to the
remote repository. You’ll then need to create a new pull request to merge the new branch with the
main branch. In a team environment, opening a new pull request is a signal to other developers to
conduct a peer review of your code. Any problems or conflicts must be resolved before you can
merge the new branch into the main branch and close the pull request.

When the new branch has been successfully merged with the main branch, and the pull
request has been closed, you can delete the new branch from the remote repository as well as from
your local machine. Be sure to update your local repository main branch with the git pull com-
mand before starting new work.

7 Avoiding Common Mistakes

Above the chart table onboard the USS America (CV-66) hung a plaque that read: “The supe-
rior seaman uses his superior intellect to avoid situations which require the use of his superior
skills.” Laymen might say instead: “The best defense is a good offense!”, and it applies to Git
operations as well. In this section, I’d like to present a short list of common issues and how to
avoid them, and if you do get into a jam, how to recover. Note that this list is not exhaustive by
any stretch of the imagination.

7.1 Mindfulness

By mindfulness, I mean be aware of what where you are in the file system and on what branch
you’re working. If you’re and individual working only on the main branch you have it pretty easy.

Git Command Description

git checkout -b branch_name Create a new branch named branch_name and switch to it.

git branch List branches in local repository.

git checkout branch_name Switch to branch_name

git branch -D branch_name Delete branch_name

Table 8-4: Git Commands Related to Branching

Chapter 8: Source Code Management with Git and GitHub Avoiding Common Mistakes

Computer Scripting Techniques with Python © 2024 Pulp Free Press 287

0
0
0
0
1
0
0
0

If you do create a new branch then pay attention to which branch you’re in. This is where the
command-line Git branch indicator saves your hide.

7.2 Use A Documented Workflow

Follow a documented workflow until you have it memorized. By documented workflow, I
mean write each Git command down in the order in which you need to call them. Referencing a
diagram like the one in figure 8-4 is super helpful until you learn the ropes. Better yet, make a
copy of that picture and paste it into your Engineer’s Notebook.

7.3 Think Before You Commit

No, I’m not talking about relationships. This is related to mindfulness. Lots of files have no
business being in the remote repository. The purpose of the .gitignore file is to maintain a list of
artifacts NOT to add to the repository. However, one day, you will be cranking out the code in
God mode, in the Flow, kickin’ it to your playlist of retro jams, and do a git add . and git
commit -m "This is a sweet modification!" in rapid succession only to realize you just
committed a top-secret password configuration file, or worse yet, all your private SSH keys. First
thing you need to do is to remember to breathe and not panic. The general formula for recovery
from this situation goes something like this:
git rm --cached file_to_remove

Or, to remove a whole directory use:
git rm --cached -r directory_to_remove

Note that you want to catch this sort of mistake before you push the errant file to the remote
repository, especially if it contains sensitive information. Once you have removed the file using
the git rm command, add it to your .gitignore file.

7.4 Push Before You Stop

At the end of the day, push your changes to the remote repository. This can be considered a
disaster recovery move and insurance against catastrophe. At least your latest changes will be
stored off site and not affected if you spill your latte on your laptop.

Pushing to the main branch at quitting time is perfectly fine if you’re a student or individual
contributor, but if you work as part of a development team, you’ll want to work on a separate
branch that doesn’t trigger an automated build process.

7.5 Pull Before You Work

This is a critical step you need to include in your workflow, especially if you work on the
same repository branch with multiple machines. One of the cool things about using Git is that you
can work from home or an office on a desktop machine, push your changes, migrate to your favor-
ite coffee shop, do a git pull to update your local branch on your laptop, work on stuff, push
your changes, return home, switch back to a different desktop, and do a git pull to update your
local repository. If you mess this up then you’ll introduce conflicts into your code base, which, at
the least, will be annoying to sort out and resolve.

https://www.youtube.com/watch?v=4vaN01VLYSQ
https://www.youtube.com/watch?v=4vaN01VLYSQ
https://www.youtube.com/watch?v=4vaN01VLYSQ

Avoiding Common Mistakes Chapter 8: Source Code Management with Git and GitHub

288 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
0
0
0

7.6 If You Really Get Into A Jam

If you really find yourself in a tight spot, I recommend flexing your Google dork chops. You
wouldn’t be the first developer to need help with Git in special situations. And that’s not just a
cheap way to end this section, tons of professional developers around the world Google for help
with Git every single day.

Quick Review

The best way to avoid common Git problems is to adopt and follow a documented workflow.
Write down your workflow process steps and the Git commands associated with each and follow
the guide until you memorize the workflow.

The most common mistakes you’ll make include committing one or more files that contain
sensitive information and should not be in the remote repository (In other words, they should
remain untracked.), and getting out of sync with pushes to the remote repository, which will intro-
duce conflicts in the codebase. This can happen especially if you’re working on the same reposi-
tory branch from two different machines.

Summary

Source Code Management, or SCM, is a set of tools and processes designed to track and man-
age changes to software project source code files and related artifacts. The SCM tools selected for
this chapter include Git and GitHub.

Git is a powerful, lightweight, fast, flexible, and distributed source code management system.
Its power intimidates both neophytes and experienced SCM users but in reality, you can get a lot
done with Git with only a small handful of commands.

Work generally starts with cloning a remote repository. There’s usually one branch in the
remote repository designated main or master. Cloning a remote repository makes a complete
copy of the repository on your local machine and does an automatic checkout of tracked files into
your workspace, ready for editing. As work progresses, you edit files, add new files, or remove
files as required. Stage changes with the git add command. Save changes to your local reposi-
tory with the git commit command, and push local repository changes to the remote repository
with the git push command.

GitHub requires the use of SSH keys to enable secure communications between local and
remote repositories. SSH keys and configuration files are located in the ~/.ssh directory. Use a
temporary directory, ~/tmp, to practice SSH key generation until you’re confident you’re generat-
ing the SSH keys you want. You can then copy the public and private keys to the ~/.ssh directory
when you’re ready to use them. To use your SSH keys with GitHub, you’ll need to add the public
SSH key to GitHub, and add the private key to your computer’s SSH agent.

You need to give some thought about how you intend to organize your repository. Repository
organization is really directory organization. Small software development projects usually have a
simple directory structure while large, complex development projects have a directory structure
that better supports multiple teams with different development responsibilities working on the
same repository. For students, a simple repository structure organized around assigned class proj-
ects is ideal.

Chapter 8: Source Code Management with Git and GitHub Avoiding Common Mistakes

Computer Scripting Techniques with Python © 2024 Pulp Free Press 289

0
0
0
0
1
0
0
0

If you’re new to Git and GitHub, I recommend creating a repository on GitHub first and then
cloning the repository to your local machine. When you create the repository, add README.md
and .gitignore files.

Use the git clone command to clone the repository to your local machine. It helps to see the
active branch displayed in your command prompt.

As a student or individual, you can easily accomplish 99% of everything you need to with Git
using a simple workflow with the following commands: git clone, git status, git add, git
commit, and git push. Use the git status command often, especially before and after staging
files for commit with the git add command, to verify workspace file additions, changes, and
deletions. If you do not what to track changes of a particular file or set of files, add them to the
.gitignore file.

Branching allows you to create and work against a copy of the repository. Later, if you like the
results, you can push the new branch to the remote repository and merge it with the main branch.
This workflow is used by development teams around the world, and individual developers find it
helpful as well, as it allows you to work on an idea without modifying main branch code.

Start by creating a new branch with the git checkout -b command. This creates a new
branch and automatically switches into it. To switch between branches use git branch. Work in
the new branch as you would normally work, and when ready, push the new branch to the remote
repository. You’ll then need to create a new pull request to merge the new branch with the main
branch. In a team environment, opening a new pull request is a signal to other developers to con-
duct a peer review of your code. Any problems or conflicts must be resolved before you can
merge the new branch into the main branch and close the pull request.

When the new branch has been successfully merged with the main branch, and the pull
request has been closed, you can delete the new branch from the remote repository as well as from
your local repository.

The best way to avoid common Git problems is to adopt and follow a documented workflow.
Write down your workflow process steps and the Git commands associated with each, and follow
the guide until you memorize the workflow.

The most common mistakes you’ll make include committing one or more files that contain
sensitive information and should not be in the remote repository (In other words, they should
remain untracked.), and getting out of sync with pushes to the remote repository, which will intro-
duce conflicts in the codebase. This can happen especially if you’re working on the same reposi-
tory branch from two different machines.

Skill-Building Exercises

1. Create Practice GitHub Repository: Following the guidance given in section 5, create a
GitHub repository to practice the Git workflows discussed in this chapter.

2. Generate and Configure SSH Keys: Following the guidance given in section 4, generate and
configure your SSH keys for use with GitHub. Document the process with any lessons learned
in your Engineer’s Notebook.

3. Practice Simple Git Workflow: Practice the simple Git workflow presented in section 6.

Avoiding Common Mistakes Chapter 8: Source Code Management with Git and GitHub

290 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
0
0
0

Don’t worry about what’s in the files. You can create empty files with the touch command, and
directories with the mkdir command. Practice the following Git commands: git clone, git
status, git add, git commit, and git push. Document these commands in your Engineer’s
Notebook along with any switches and arguments required.

4. Practice Branching and Merging Git Workflow: Practice the branching and merging work-
flow presented in section 7. Document the commands you use in your Engineer’s Notebook
along with any switches and arguments required.

5. Practice Recovering From Mistakenly Committed File: In your practice local repository,
add and commit a file named sensitive_data.txt. Use the git rm --cache command to remove it
from the commit. Next, add the file to your .gitignore file. Note the effects this has when you
next run the git status command.

6. Practice Recovering From Mistakenly Pushing File To Remote Repository: This is a bit
more challenging, as the process to correct this sort of mistake is not covered in this chapter.
Again, create an arbitrary file and push it to the remote repository. Research the actions
required to remove that file from being tracked while not deleting the file completely. There is a
brute force method to fix this problem. Can you figure out what it is?

7. Research Git Commands: Browse the official Git documentation and see what commands are
available that were not discussed in this chapter: https://git-scm.com

8. Download the Pro Git Book: You can download the Pro Git book and use it as a handy refer-
ence: https://github.com/progit/progit2/releases/download/2.1.360/progit.pdf

9. Automatically Load Private SSH Key: Follow the steps in section 4.12 for your particular
operating system to configure your SSH private key to load automatically.

10. Draw The Git Workflows Discussed In This Chapter: Make your own drawings of the Git
workflows discussed in this chapter. Include the local and remote repositories along with work-
space and staging areas. Include the commands used with each workflow and how they affect
tracked and untracked files.

Suggested Projects

1. Create Class Programming Projects Repository: Create a GitHub repository to house your
class programming projects. You may want a different repository per class. Adopt the reposi-
tory structure given in figure 8-16. I recommend initially creating it as a private repository until
to guard against prying eyes. If you need to collaborate with another student, you can grant
them access to repository.

2. Explore the .gitignore File: Create a repository in GitHub and add the README.md and
,gitignore files. Select the Python .gitignore template. Clone the repository to your local

https://git-scm.com
https://github.com/progit/progit2/releases/download/2.1.360/progit.pdf

Chapter 8: Source Code Management with Git and GitHub Avoiding Common Mistakes

Computer Scripting Techniques with Python © 2024 Pulp Free Press 291

0
0
0
0
1
0
0
0

machine and explore the contents of the .gitignore file.

3. Study Markdown Language: The Markdown language is used to add content to the
README.md file. Visit the Markdown Guide site and study the Markdown Cheat Sheet:
https://www.markdownguide.org

4. Explore The .git Directory: Located at the root of a local repository is a .git hidden directory.
Explore the contents of the .git directory, make a list of each file or subdirectory you find, and
make a note of its purpose.

2. Self-Test Questions

1. Define in your own words the meaning of Source Code Management.

2. List several benefits to adopting Source Code Management.

3. (True/False) Git supports multiple workflows.

4. Explain in your own words what is meant by "Git is distributed." Draw a picture to support
your answer.

5. (True/False) Cloning a remote repository creates a copy of the repository on your local
machine.

6. What’s the difference between tracked and untracked files?

7. In which special file do you list files you want to remain untracked?

8. Explain in your own words why you would want to create and work on a new branch.

9. List and describe the steps and git commands required from the moment you check out a new
branch until you merge the branch with the remote repository’s main branch.

10. What Git command would you use to remove a file from a recent commit?

References

Interactive Git Cheat Sheet, https://ndpsoftware.com/git-cheatsheet.html#loc=index;

Do You Have A Git Mess On Your Hands?, http://justinhileman.info/article/git-pretty/git-
pretty.png

https://ndpsoftware.com/git-cheatsheet.html#loc=index;
http://justinhileman.info/article/git-pretty/git-pretty.png
http://justinhileman.info/article/git-pretty/git-pretty.png
https://www.markdownguide.org

Avoiding Common Mistakes Chapter 8: Source Code Management with Git and GitHub

292 © 2024 Pulp Free Press Computer Scripting Techniques with Python

0
0
0
0
1
0
0
0

Git SCM, https://git-scm.com

Git For Windows, https://gitforwindows.org

OpenSSH, https://www.openssh.com

Setup SSH Authentication for Git Bash on Windows, https://gist.github.com/jherax/
979d052ad5759845028e6742d4e2343b

ssh-agent Man Page, https://linux.die.net/man/1/ssh-agent

Working with SSH Passphrases, GitHub, https://docs.github.com/en/authentication/connect-
ing-to-github-with-ssh/working-with-ssh-key-passphrases?platform=windows

Markdown Guide Website, https://www.markdownguide.org

Notes

https://git-scm.com
https://gitforwindows.org
https://www.openssh.com
https://gist.github.com/jherax/979d052ad5759845028e6742d4e2343b
https://gist.github.com/jherax/979d052ad5759845028e6742d4e2343b
https://linux.die.net/man/1/ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/working-with-ssh-key-passphrases?platform=windows
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/working-with-ssh-key-passphrases?platform=windows
https://www.markdownguide.org

	Ch-8: Source Code Management With Git and GitHub
	1.1 SCM Architecture And Processes
	2 Git
	2.1 Git Is Fast
	2.2 Git Is Flexible
	2.3 Git Is Distributed
	2.4 Local Repository Organization
	2.5 Checking Out A New Local Branch
	2.6 Practice Makes Perfect

	3 Configure SSH Keys For GitHub
	3.1 Assumptions
	3.2 Preconditions
	3.3 Process Overview
	3.4 Verify or Create .SSH Directory
	3.5 Create tmp Directory
	3.6 Generate SSH Keys
	3.7 Copy Keys To .ssh Directory
	3.8 Add Public Key To GitHub
	3.9 Start SSH Agent on Local Machine
	3.10 Add Private Key To SSH Agent
	3.11 Test SSH Keys
	3.12 Load SSH Private Key Into SSH Agent Automatically
	3.12.1 macOS
	3.12.2 Linux Mint
	3.12.3 Windows Git Bash

	3.13 SSH Key Generation Command Summary

	4 Create GitHub Repository
	4.1 Repository Organization Considerations
	4.2 Create Python Class Projects Repository
	4.3 Create New GitHub Repository
	4.4 Clone The Repository With SSH
	4.5 Display Active Branch In Terminal Prompt
	4.5.1 Windows and Git Bash Terminal
	4.5.2 Linux Mint
	4.5.3 macOS

	5 A Simple Git Workflow
	5.1 git clone
	5.2 git status
	5.3 git add
	5.4 git commit
	5.5 git push
	5.6 Simple Git Workflow Command Summary
	5.7 Parting Thoughts

	6 Branching And Merging
	6.1 Creating A New Branch
	6.2 Git Branching Workflow Command Summary

	7 Avoiding Common Mistakes
	7.1 Mindfulness
	7.2 Use A Documented Workflow
	7.3 Think Before You Commit
	7.4 Push Before You Stop
	7.5 Pull Before You Work
	7.6 If You Really Get Into A Jam

